No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We consider two generalizations R0w and R0 of the usual symmetry axiom for topological spaces to arbitrary closure spaces and convergence spaces. It is known that the two properties coincide on Top and define a non-simple subcategory. We show that R0W defines a simple subcategory of closure spaces and R0 a non-simple one. The last negative result follows from the stronger statement that every epireflective subcategory of R0 Conv containing all T1 regular topological spaces is not simple. Similar theorems are shown for the topological categories Fil and Mer.