Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T10:45:35.472Z Has data issue: false hasContentIssue false

Foetal cardiac function: assessing new technologies

Published online by Cambridge University Press:  30 September 2014

Helena M. Gardiner*
Affiliation:
Department of Obstetrics, Gynaecology and Reproductive Sciences, The Texas Fetal Centre, Children’s Memorial Hermann Hospital, University of Texas, Houston, Texas, United States of America
*
Correspondence to: Professor H. M. Gardiner, MD, PhD, Department of Obstetrics, Gynaecology and Reproductive Sciences, The Texas Fetal Centre, Children’s Memorial Hermann Hospital, University of Texas, 6410 Fannin, Suite 700, Houston, TX 77030, United States of America. Tel: +1 832 325 7288; Fax: +1 7133831464; E-mail: Helena.m.gardiner@uth.tmc.edu

Abstract

Assessment of foetal cardiac function is more challenging than in the adult, in whom emerging technologies are tested. The postnatal cardio-respiratory interaction is replaced by the cardio-placental circulation and impedance of the brain, and distal vascular beds play an important role in modulating flow to enable its redistribution in the foetal body. Prenatal specialists, comprising obstetricians and cardiologists, have tested a variety of traditional methodologies, as well as non-Doppler offline ultrasound methods in the foetus. This article reviews the development of techniques, outlines their use, and draws attention to pitfalls in adapting technologies validated in the adult heart to the small, fast beating, remote, and largely ungated foetal heart.

Type
Original Article
Copyright
© Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hofstaetter, C, Hansmann, M, Eik-Nes, SH, Huhta, JC, Luther, SL. A cardiovascular profile score in the surveillance of fetal hydrops. J Matern Fetal Neonatal Med 2006; 19: 407413.Google Scholar
2.Fukushima, K, Morokuma, S, Fujita, Y, et al. Short-term and long-term outcomes of 214 cases of non-immune hydrops fetalis. Early Hum Dev 2011; 87: 571575.Google Scholar
3.Campbell, AGM, Dawes, GS, Fishman, AP, Hyman, AI. Regional redistribution of blood flow in the mature fetal lamb. Circ Res 1967; XXI: 229235.Google Scholar
4.Rizzo, G, Capponi, A, Pietropolli, A, Bufalino, LM, Arduini, D, Romanini, C. Fetal cardiac and extracardiac flows preceding intrauterine death. Ultrasound Obstet Gynecol 1994; 4: 139142.CrossRefGoogle ScholarPubMed
5.Rudolph, AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 1985; 57: 811821.CrossRefGoogle ScholarPubMed
6.Marwick, TH. Methods used for the assessment of LV systolic function: common currency or tower of Babel? Heart 2013; 99: 10781086.CrossRefGoogle ScholarPubMed
7.Gardiner, HM, Brodszki, J, Eriksson, A, Maršál, K. Volume blood flow estimation in the normal and growth-restricted fetus. Ultrasound Med Biol 2002; 28: 11071113.Google Scholar
8.DeVore, GR, Horenstein, J. Ductus venosus index: a method for evaluating right ventricular preload in the second-trimester fetus. Ultrasound Obstet Gynecol 1993; 3: 338342.Google Scholar
9.van Splunder, IP, Wladimiroff, JW. Cardiac functional changes in the human fetus in the late first and early second trimesters. Ultrasound Obstet Gynecol 1996; 7: 411415.Google Scholar
10.van Splunder, IP, Stijnen, T, Wladimiroff, JW. Fetal atrioventricular, venous and arterial flow velocity waveforms in the small for gestational age fetus. Pediatr Res 1997; 42: 765775.CrossRefGoogle ScholarPubMed
11.Quiñones, MA, Otto, CM, Stoddard, M, Waggoner, A, Zoghbi, WA. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 2002; 15: 167184.CrossRefGoogle ScholarPubMed
12.Campbell, S, Griffin, DR, Pearce, JM, Diaz-Recasens, J, Cohen-Overbeek, T, Willson, K. New Doppler technique for assessing uteroplacental blood flow. Lancet 1983; iii: 675677.CrossRefGoogle Scholar
13.Gudmundsson, S, Marsál, K. Blood velocity waveforms in the fetal aorta and umbilical artery as predictors of fetal outcome: a comparison. Am J Perinatol 1991; 8: 16.Google Scholar
14.Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, KH. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 1995; 91: 129138.CrossRefGoogle ScholarPubMed
15.Kiserud, T, Eik-Nes, SH, Blaas, HG, Hellevik, LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet 1991; 338: 14121414.Google Scholar
16.Mori, A, Trudinger, B, Mori, R, Reed, V, Takeda, Y. The fetal central venous pressure waveform in normal pregnancy and in umbilical placental insufficiency. Am J Obstet Gynecol 1995; 172: 5157.Google Scholar
17.Gardiner, HM, Belmar, C, Tulzer, G, et al. Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol 2008; 51: 12991308.Google Scholar
18.Karatza, AA, Wolfenden, JL, Taylor, MJO, Wee, L, Fisk, NM, Gardiner, HM. The influence of twin-twin transfusion syndrome on fetal cardiovascular structure and function: prospective case-control study of 136 monochorionic twin pairs. Heart 2002; 88: 271277.CrossRefGoogle Scholar
19.Bensouda, B, Fouron, J-C, Raboisson, M-J, Lamoureux, J, Lachance, C, Leduc, L. Relevance of measuring diastolic time intervals in the ductus venosus during the early stages of twin–twin transfusion syndrome. Ultrasound Obstet Gynecol 2007; 30: 983987.Google Scholar
20.Rizzo, G, Capponi, A, Talone, PE, Arduini, D, Romanini, C. Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded fetuses. Ultrasound Obstet Gynecol 1996; 7: 401410.Google Scholar
21.Kiserud, T, Eik-Nes, SH, Blaas, HG, Hellevik, LR, Simensen, B. Ductus venosus blood velocity and the umbilical circulation in the seriously growth-retarded fetus. Ultrasound Obstet Gynecol 1994; 4: 109114.Google Scholar
22.Mori, A, Trudinger, B, Mori, R, Reed, V, Takeda, Y. The fetal central venous pressure waveform in normal pregnancy and in umbilical placental insufficiency. Am J Obstet Gynecol 1995; 172: 5157.Google Scholar
23.Bonnin, P, Fouron, JC, Teyssier, G, Sonesson, SE, Skoll, A. Quantitative assessment of circulatory changes in the fetal aortic isthmus during progressive increase of resistance to umbilical blood flow. Circulation 1993; 88: 216222.CrossRefGoogle ScholarPubMed
24.Fouron, JC, Gosselin, J, Raboisson, MJ, et al. The relationship between an aortic isthmus blood flow velocity index and the postnatal neurodevelopmental status of fetuses with placental circulatory insufficiency. Am J Obstet Gynecol 2005; 192: 497503.CrossRefGoogle ScholarPubMed
25.Figueras, F, Cruz-Martinez, R, Sanz-Cortes, M, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 2011; 38: 288294.CrossRefGoogle ScholarPubMed
26.MacDonald, I. Growth of biparietal diameter of foetal head in the last weeks of pregnancy. Br Med J 1952; 12: 798800.CrossRefGoogle Scholar
27.DeVore, GR, Donnerstein, RL, Kleinman, CS, Platt, LD, Hobbins, JC. Fetal echocardiography. I. Normal anatomy as determined by real-time-directed M-mode ultrasound. Am J Obstet Gynecol 1982; 144: 249260.Google Scholar
28.Allan, LD, Joseph, MC, Boyd, EG, Campbell, S, Tynan, M. M-mode echocardiography in the developing human fetus. Br Heart J 1982; 47: 573583.Google Scholar
29.Gardiner, HM, Pasquini, L, Wolfenden, J, et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006; 113: 3947.CrossRefGoogle ScholarPubMed
30.Germanakis, I, Pepes, S, Sifakis, S, Gardiner, H. Fetal longitudinal myocardial function assessment by anatomic M-mode. Fetal Diagn Ther 2012; 32: 6571.Google Scholar
31.Roelandt, J, Gibson, DG. Recommendations for standardization of measurements from M-mode echocardiograms. Eur Heart J 1980; 1: 375378.CrossRefGoogle ScholarPubMed
32.Lee, CH, Vancheri, F, Josen, MS, Gibson, DG. Discrepancies in the measurement of isovolumic relaxation time: a study comparing M mode and Doppler echocardiography. Br Heart J 1990; 64: 214218.Google Scholar
33.Schiller, NB, Shah, PM, Crawford, M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 1989; 2: 358367.Google Scholar
34.Chen, Q, Li, W, O’Sullivan, C, Francis, DP, Gibson, D, Henein, MY. Clinical in vivo calibration of pulse wave tissue Doppler velocities in the assessment of ventricular wall motion. A comparison study with M-mode echocardiography. Int J Cardiol 2004; 97: 289295.Google Scholar
35.Henein, MY, Gibson, DG. Normal long axis function. Heart 1999; 81: 111113.CrossRefGoogle ScholarPubMed
36.Tulzer, G, Khowsathit, P, Gudmundsson, S, et al. Diastolic function of the fetal heart during second and third trimester: a prospective longitudinal Doppler-echocardiographic study. Eur J Pediatr 1994; 153: 151154.CrossRefGoogle ScholarPubMed
37.Tei, C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 1995; 26: 135136.Google Scholar
38.Van Mieghem, T, Gucciardo, L, Lewi, P, et al. Validation of the fetal myocardial performance index in the second and third trimesters of gestation. Ultrasound Obstet Gynecol 2009; 33: 5863.Google Scholar
39.Hernandez-Andrade, E, Lopez-Tenorio, J, Figueroa-Diesel, H, et al. A modified myocardial performance (Tei) index based on the use of valve clicks improves reproducibility of fetal left cardiac function assessment. Ultrasound Obstet Gynecol 2005; 26: 227232.CrossRefGoogle ScholarPubMed
40.Vogel, M, Schmidt, MR, Kristiansen, SB, et al. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model. Circulation 2002; 105: 16931699.Google Scholar
41.Harada, K, Ogawa, M, Tanaka, T. Right ventricular pre-ejection myocardial velocity and myocardial acceleration in normal fetuses assessed by Doppler tissue imaging. J Am Soc Echocardiogr 2005; 18: 370374.Google Scholar
42.Harada, K, Tsuda, A, Orino, T, Tanaka, T, Takada, G. Tissue Doppler imaging in the normal fetus. Int J Cardiol 1999; 71: 227234.CrossRefGoogle ScholarPubMed
43.Hernandez-Andrade, E, Benavides-Serralde, JA, Cruz-Martinez, R, Welsh, A, Mancilla-Ramirez, J. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagn Ther 2012; 32: 2229.CrossRefGoogle ScholarPubMed
44.Raboisson, MJ, Fouron, JC, Lamoureux, J, et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004; 110: 30433048.CrossRefGoogle ScholarPubMed
45.Suhling, M, Jansen, C, Arigovindan, M, et al. Multiscale motion mapping: a novel computer vision technique for quantitative, objective echocardiographic motion measurement independent of Doppler – first clinical description and validation. Circulation 2004; 110: 30933099.Google Scholar
46.D’Hooge, J, Heimdal, A, Jamal, F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000; 1: 154170.Google Scholar
47.Notomi, Y, Lysyansky, P, Setser, RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005; 45: 20342041.Google Scholar
48.Marwick, TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 2006; 47: 13131327.Google Scholar
49.Younoszai, AK, Saudek, DE, Emery, SP, Thomas, JD. Evaluation of myocardial mechanics in the fetus by velocity vector imaging. J Am Soc Echocardiogr 2008; 21: 470474.Google Scholar
50.Matsui, H, Germanakis, I, Kulinskaya, E, Gardiner, HM. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol 2011; 37: 150157.Google Scholar
51.Peng, QH, Zhou, QC, Zeng, S, et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn 2009; 29: 11491155.CrossRefGoogle ScholarPubMed
52.Germanakis, I, Gardiner, HM. Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn Ther 2012; 32: 3946.Google Scholar