Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T04:20:06.424Z Has data issue: false hasContentIssue false

Perioperative and long-term management of Fontan patients

Published online by Cambridge University Press:  12 January 2021

May Al-Shawk
Affiliation:
Institute of Medical and Biomedical Education, St George’s University of London, London, UK
Adeolu Banjoko
Affiliation:
College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Ariana Axiaq
Affiliation:
School of Medicine, Queen’s University Belfast, Belfast, UK
Kiran Amin
Affiliation:
Institute of Medical and Biomedical Education, St George’s University of London, London, UK
Amer Harky*
Affiliation:
Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK Department of Cardiac Surgery, Alder Hey Children Hospital, Liverpool, UK Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool, Heart and Chest Hospital, UK
*
Author for correspondence: Dr A. Harky, MSc, MRCS, Department of Cardiac Surgery, Alder Hey Children Hospital, E Prescot Rd, L14 5AB, Liverpool, UK. Tel: +44-0151-228-4811. E-mail: aaharky@gmail.com

Abstract

A Fontan circulation requires a series of three-staged operations aimed to palliate patients with single-ventricle CHD. Currently, the most frequent technique is the extracardiac total cavopulmonary connection, an external conduit connecting the IVC and right pulmonary artery, bypassing the right side of the heart. Fontan candidates must meet strict criteria; they are assessed utilising both cardiac catheterisation and cardiac magnetic resonance. Postoperatively, treatment protocols prioritise antibiotic prophylaxis, diuretics, angiotensin-converting enzyme inhibitors, anticoagulation, and oxygen therapy with fluid restriction and a low-fat diet. These measures aim to reduce length of stay in the ICU and hospital by preventing acute complications such as infection, venous thromboembolism, low cardiac output, pleural effusion, and acute kidney injury. Late complications of a Fontan procedure include circulation failure, protein-losing enteropathy, plastic bronchitis, and Fontan-associated liver disease. The definitive management is cardiac transplantation, with promising innovations in selective embolisation of lymphatic vessels and Fontan-specific ventricular assist devices. Further research assessing current protocols in the perioperative management of Fontan patients would be beneficial for standardising current practice and improving outcomes.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

May Al-Shawk and Adeolu Banjoko are both first authors on this review with a shared first co-authorship

References

Rychik, J, Atz, AM, Celermajer, DS, Deal, BJ, et al. Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American heart association. Circulation 2019; 140: E234E284.10.1161/CIR.0000000000000696CrossRefGoogle Scholar
Sunstrom, RE, Muralidaran, A, Gerrah, R, et al. A defined management strategy improves early outcomes after the Fontan procedure: The Portland protocol. Ann Thorac Surg 2015; 99: 148155.10.1016/j.athoracsur.2014.06.121CrossRefGoogle ScholarPubMed
Nayak, S, Booker, PD. The Fontan circulation. Contin Educ Anaesthesia, Crit Care Pain 2008; 8(1): 2630.10.1093/bjaceaccp/mkm047CrossRefGoogle Scholar
Baum, VC, De Souza, DG, Cronin, B, Maus, TM. Chapter 8 - Adult congenital heart disease in noncardiac surgery. In: Kaplan JA, Cronin B, Maus TM, editors. Essentials of Cardiac Anesthesia for Noncardiac Surgery. Elsevier; 2019. p. 165–195.Google Scholar
Backer, CL, Deal, BJ, Kaushal, S, Russell, HM, Tsao, S, Mavroudis, C. Extracardiac versus intra-atrial lateral tunnel fontan: extracardiac is better. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2011; 14(1): 410.10.1053/j.pcsu.2011.01.019CrossRefGoogle Scholar
Choussat, A, Fontan, F, Besse, P. Selection criteria for the Fontan procedure. In: Anderson, R, Shinebourne, E (eds). Paediatric Cardiology. Churchill Livingstone, Edinburgh, Scotland, 1977: 559666.Google Scholar
Stern, HJ. Fontan “Ten commandments” revisited and revised. Pediatr Cardiol 2010; 31: 11311134.10.1007/s00246-010-9811-9CrossRefGoogle ScholarPubMed
Ait-Ali, L, De Marchi, D, Lombardi, M, et al. The role of cardiovascular magnetic resonance in candidates for Fontan operation: proposal of a new Algorithm. J Cardiovasc Magn Reson 2011; 13: 69.10.1186/1532-429X-13-69CrossRefGoogle ScholarPubMed
Mohammad Nijres, B, Murphy, JJ, Diab, K, Awad, S, Abdulla, R. Routine cardiac catheterization prior to Fontan operation: is it a necessity? Pediatr Cardiol 2018; 39: 818823.10.1007/s00246-018-1825-8CrossRefGoogle ScholarPubMed
Kleinerman, RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 2006; 36: 121125.CrossRefGoogle ScholarPubMed
Brown, DW, Gauvreau, K, Powell, AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg 2013; 146: 11721178.10.1016/j.jtcvs.2012.12.079CrossRefGoogle ScholarPubMed
Schicchi, N, Secinaro, A, Muscogiuri, G, et al. Multicenter review: role of cardiovascular magnetic resonance in diagnostic evaluation, pre-procedural planning and follow-up for patients with congenital heart disease. Radiol Medica 2016; 121: 342351.10.1007/s11547-015-0608-zCrossRefGoogle ScholarPubMed
Fogel, MA, Khiabani, RH, Yoganathan, A. Imaging for preintervention planning pre- and post-Fontan procedures. Circ Cardiovasc Imaging 2013; 6: 10921101.10.1161/CIRCIMAGING.113.000335CrossRefGoogle ScholarPubMed
Prakash, A, Khan, MA, Hardy, R, Torres, AJ, Chen, JM, Gersony, WM. A new diagnostic algorithm for assessment of patients with single ventricle before a Fontan operation. J Thorac Cardiovasc Surg 2009; 138: 917923.10.1016/j.jtcvs.2009.03.022CrossRefGoogle ScholarPubMed
Jones, MB. The Fontan procedure for single-ventricle physiology. Crit Care Nurse 2018; 38: e1e10.10.4037/ccn2018994CrossRefGoogle ScholarPubMed
Cava, JR, Bevandic, SM, Steltzer, MM, Tweddell, JS. A medical strategy to reduce persistent chest tube drainage after the Fontan operation. Am J Cardiol 2005; 96: 130133.10.1016/j.amjcard.2005.03.034CrossRefGoogle ScholarPubMed
Pike, NA, Okuhara, CA, Toyama, J, Gross, BP, Wells, WJ, Starnes, VA. Reduced pleural drainage, length of stay, and readmissions using a modified Fontan management protocol. J Thorac Cardiovasc Surg 2015; 150: 481487.10.1016/j.jtcvs.2015.06.042CrossRefGoogle ScholarPubMed
Ergün, S, Yıldız, O, Ayyıldız, P, et al. Parameters affecting pleural drainage and management strategy after Fontan operation. J Card Surg 2020; 35: 15561562.10.1111/jocs.14691CrossRefGoogle ScholarPubMed
Lagergren, SM, Jensen, M, Beaven, B, Goudar, S. Clinical pathway for the Fontan patient to standardise care and improve outcomes. Cardiol Young 2020; 30(9): 12471252.10.1017/S1047951120001924CrossRefGoogle ScholarPubMed
Jaworski, R, Kansy, A, Dzierzanowska-Fangrat, K, Maruszewski, B. Antibiotic prophylaxis in pediatric cardiac surgery: where are we and where do we go? A systematic review. Surg Infect (Larchmt) 2019; 20: 253260.10.1089/sur.2018.272CrossRefGoogle ScholarPubMed
Ovroutski, S, Sohn, C, Barikbin, P, et al. Analysis of the risk factors for early failure after extracardiac Fontan operation. Ann Thorac Surg 2013; 95: 14091416.10.1016/j.athoracsur.2012.12.042CrossRefGoogle ScholarPubMed
Sasaki, J, Dykes, JC, Sosa, LJ, et al. Risk factors for longer hospital stay following the Fontan operation. Pediatr Crit Care Med 2016; 17: 411419.10.1097/PCC.0000000000000701CrossRefGoogle ScholarPubMed
Ono, M, Burri, M, Balling, G, et al. Predicted clinical factors associated with the intensive care unit length of stay after total cavopulmonary connection. J Thorac Cardiovasc Surg 2019; 157: 20052013.10.1016/j.jtcvs.2018.10.144CrossRefGoogle ScholarPubMed
Algaze, CA, Koth, AM, Faberowski, LW, Hanley, FL, Krawczeski, CD, Axelrod, DM. Acute kidney injury in patients undergoing the extracardiac Fontan operation with and without the use of cardiopulmonary bypass. Pediatr Crit Care Med 2017; 18: 3443.10.1097/PCC.0000000000000984CrossRefGoogle ScholarPubMed
Alghamdi, AA, Singh, SK, Hamilton, BCS, et al. Early extubation after pediatric cardiac surgery: systematic review, meta-analysis, and evidence-based recommendations. J Card Surg 2010; 25: 586595.10.1111/j.1540-8191.2010.01088.xCrossRefGoogle ScholarPubMed
Mutsuga, M, Quiñonez, LG, MacKie, AS, et al. Fast-track extubation after modified Fontan procedure. J Thorac Cardiovasc Surg 2012; 144: 547552.10.1016/j.jtcvs.2012.05.047CrossRefGoogle ScholarPubMed
Ono, M, Georgiev, S, Burri, M, et al. Early extubation improves outcome following extracardiac total cavopulmonary connection. Interact Cardiovasc Thorac Surg 2019; 29: 8592.10.1093/icvts/ivz010CrossRefGoogle ScholarPubMed
Lofland, GK. The enhancement of hemodynamic performance in Fontan circulation using pain free spontaneous ventilation. Eur J Cardio-Thoracic Surg. 2001; 20: 114119.10.1016/S1010-7940(01)00757-6CrossRefGoogle ScholarPubMed
Cavigelli-Brunner, A, Hug, MI, Dave, H, et al. Prevention of low cardiac output syndrome after pediatric cardiac surgery: a double-blind randomized clinical pilot study comparing dobutamine and milrinone. Pediatr Crit Care Med 2018; 19: 619625.10.1097/PCC.0000000000001533CrossRefGoogle ScholarPubMed
Gewillig, M, Brown, SC. The Fontan circulation after 45 years: update in physiology. Heart 2016; 102: 10811086.10.1136/heartjnl-2015-307467CrossRefGoogle ScholarPubMed
Hosseinpour, AR, van Steenberghe, M, Bernath, MA, et al. Improvement in perioperative care in pediatric cardiac surgery by shifting the primary focus of treatment from cardiac output to perfusion pressure: are beta stimulants still needed? Congenit Heart Dis 2017; 12: 570577.10.1111/chd.12485CrossRefGoogle ScholarPubMed
Bouhout, I, Ben-Ali, W, Khalaf, D, Raboisson, MJ, Poirier, N. Effect of fenestration on Fontan procedure outcomes: a meta-analysis and review. Ann Thorac Surg 2020; 109: 14671474.10.1016/j.athoracsur.2019.12.020CrossRefGoogle ScholarPubMed
Wilson, TG, Iyengar, AJ, D’Udekem, Y. The use and misuse of ACE inhibitors in patients with single ventricle physiology. Hear Lung Circ 2016; 25(3): 229236.10.1016/j.hlc.2015.10.005CrossRefGoogle ScholarPubMed
Cai, J, Su, Z, Shi, Z, et al. Nitric oxide and milrinone: combined effect on pulmonary circulation after Fontan-type procedure: a prospective, randomized study. Ann Thorac Surg 2008; 86: 882888.10.1016/j.athoracsur.2008.05.014CrossRefGoogle ScholarPubMed
Tominaga, Y, Iwai, S, Yamauchi, S, et al. Post-extubation inhaled nitric oxide therapy via high-flow nasal cannula after Fontan procedure. Pediatr Cardiol 2019; 40: 10641071.10.1007/s00246-019-02122-2CrossRefGoogle ScholarPubMed
Tunks, RD, Barker, PCA, Benjamin, DK, et al. Sildenafil exposure and hemodynamic effect after Fontan surgery. Pediatr Crit Care Med 2014; 15: 2834.10.1097/PCC.0000000000000007CrossRefGoogle ScholarPubMed
Giordano, R, Palma, G, Poli, V, et al. First experience with sildenafil after Fontan operation: short-term outcomes. J Cardiovasc Med 2015; 16: 552555.10.2459/JCM.0b013e328361390aCrossRefGoogle ScholarPubMed
Hill, KD, Maharaj, AR, Li, JS, Thompson, E, Barker, PCA, Hornik, CP. A randomized, controlled pharmacokinetic and pharmacodynamics trial of ambrisentan after Fontan surgery. Pediatr Crit Care Med 2020; 21: e795803.10.1097/PCC.0000000000002410CrossRefGoogle ScholarPubMed
Sinha, P, Zurakowski, D, He, D, et al. Intra/extracardiac fenestrated modification leads to lower incidence of arrhythmias after the Fontan operation. J Thorac Cardiovasc Surg 2013; 145: 678682.10.1016/j.jtcvs.2012.03.080CrossRefGoogle ScholarPubMed
Pundi, KN, Pundi, KN, Johnson, JN, et al. Sudden cardiac death and late arrhythmias after the Fontan operation. Congenit Heart Dis 2017; 12: 1723.10.1111/chd.12401CrossRefGoogle ScholarPubMed
Moore, BM, Cordina, RL, McGuire, MA, Celermajer, DS. Adverse effects of amiodarone therapy in adults with congenital heart disease. Congenit Heart Dis 2018; 13: 944951.10.1111/chd.12657CrossRefGoogle ScholarPubMed
McCrindle, BW, Manlhiot, C, Cochrane, A, et al. Factors associated with thrombotic complications after the Fontan procedure: a secondary analysis of a multicenter, randomized trial of primary thromboprophylaxis for 2 years after the Fontan procedure. J Am Coll Cardiol 2013; 61: 346353.10.1016/j.jacc.2012.08.1023CrossRefGoogle ScholarPubMed
Monagle, P, Cochrane, A, Roberts, R, et al. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. J Am Coll Cardiol 2011; 58: 645651.10.1016/j.jacc.2011.01.061CrossRefGoogle ScholarPubMed
Alsaied, T, Alsidawi, S, Allen, CC, Faircloth, J, Palumbo, JS, Veldtman, GR. Strategies for thromboprophylaxis in Fontan circulation: a meta-analysis. Heart 2015; 101: 17311737.10.1136/heartjnl-2015-307930CrossRefGoogle ScholarPubMed
Talwar, S, Agarwala, S, Mittal, CM, Choudhary, SK, Airan, B. Pleural effusions in children undergoing cardiac surgery. Ann Pediatr Cardiol 2010; 3: 5864.10.4103/0974-2069.64368CrossRefGoogle ScholarPubMed
Milonakis, M, Chatzis, AC, Giannopoulos, NM, et al. Etiology and management of chylothorax following pediatric heart Surgery. J Card Surg 2009; 24: 369373.10.1111/j.1540-8191.2008.00781.xCrossRefGoogle ScholarPubMed
Esch, JJ, Salvin, JM, Thiagarajan, RR, Del Nido, PJ, Rajagopal, SK. Acute kidney injury after Fontan completion: risk factors and outcomes. J Thorac Cardiovasc Surg 2015; 150: 190197.10.1016/j.jtcvs.2015.04.011CrossRefGoogle ScholarPubMed
Singh, S. Acute kidney injury after pediatric cardiac surgery. Ann Card Anaesth 2016; 19: 306313.10.4103/0971-9784.179635CrossRefGoogle ScholarPubMed
Gulati, A, Bagga, A. Management of acute renal failure in the pediatric intensive care unit. Indian J Pediatr 2011; 78: 718725.10.1007/s12098-010-0306-8CrossRefGoogle ScholarPubMed
Downing, TE, Allen, KY, Glatz, AC, et al. Long-term survival after the Fontan operation: 20 years of experience at a single center. J Thorac Cardiovasc Surg 2017; 154: 243.e2253.e2.10.1016/j.jtcvs.2017.01.056CrossRefGoogle ScholarPubMed
Schilling, C, Dalziel, K, Nunn, R, et al. The Fontan epidemic: population projections from the Australia and New Zealand Fontan Registry. Int J Cardiol 2016; 219: 1419.10.1016/j.ijcard.2016.05.035CrossRefGoogle ScholarPubMed
Piran, S, Veldtman, G, Siu, S, Webb, GD, Liu, PP. Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation 2002; 105: 11891194.10.1161/hc1002.105182CrossRefGoogle ScholarPubMed
Atz, AM, Zak, V, Mahony, L, et al. Longitudinal outcomes of patients with single ventricle after the Fontan procedure. J Am Coll Cardiol 2017; 69: 27352744.10.1016/j.jacc.2017.03.582CrossRefGoogle ScholarPubMed
Ovroutoski, S, Ewert, P, Alexi-Meskishvili, V, Peters, B, Hetzer, R, Berger, F. Dilatation and stenting of the Fontan pathway: impact of the stenosis treatment on chronic ascites. J Interv Cardiol 2008; 21: 3843.10.1111/j.1540-8183.2007.00323.xCrossRefGoogle Scholar
Anderson, PAW, Breitbart, RE, McCrindle, BW, et al. The Fontan patient: inconsistencies in medication therapy across seven pediatric heart network centers. Pediatr Cardiol 2010; 31: 12191228.CrossRefGoogle ScholarPubMed
Dubin, AM, Janousek, J, Rhee, E, et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol 2005; 46: 22772283.10.1016/j.jacc.2005.05.096CrossRefGoogle Scholar
Poh, CL, Cochrane, A, Galati, JC, et al. Ten-year outcomes of Fontan conversion in Australia and New Zealand demonstrate the superiority of a strategy of early conversion. Eur J Cardio-thoracic Surg 2016; 49: 530535.10.1093/ejcts/ezv112CrossRefGoogle ScholarPubMed
Everitt, MD, Donaldson, AE, Stehlik, J, et al. Would access to device therapies improve transplant outcomes for adults with congenital heart disease? Analysis of the United Network for Organ Sharing (UNOS). J Hear Lung Transplant 2011; 30: 395401.10.1016/j.healun.2010.09.008CrossRefGoogle Scholar
Simpson, KE, Pruitt, E, Kirklin, JK, et al. Fontan patient survival after pediatric heart transplantation has improved in the Current Era. Ann Thorac Surg 2017; 103: 13151320.10.1016/j.athoracsur.2016.08.110CrossRefGoogle ScholarPubMed
Murtuza, B, Hermuzi, A, Crossland, DS, et al. Impact of mode of failure and end-organ dysfunction on the survival of adult Fontan patients undergoing cardiac transplantation. Eur J Cardiothorac Surg 2017; 51: 135141.10.1093/ejcts/ezw243CrossRefGoogle ScholarPubMed
Horne, D, Conway, J, Rebeyka, IM, Buchholz, H. Mechanical circulatory support in univentricular hearts: current management. Pediatr Card Surg Annu 2015; 18: 1724.Google ScholarPubMed
Munsterman, ID, Duijnhouwer, AL, Kendall, TJ, et al. The clinical spectrum of Fontan-associated liver disease: results from a prospective multimodality screening cohort. Eur Heart J 2019; 40: 10571068.10.1093/eurheartj/ehy620CrossRefGoogle ScholarPubMed
Emamaullee, J, Zaidi, AN, Schiano, T, et al. Fontan-associated liver disease. Circulation 2020; 142: 591604.10.1161/CIRCULATIONAHA.120.045597CrossRefGoogle ScholarPubMed
Wong, TW, Gandhi, MJ, Daly, RC, et al. Liver allograft provides immunoprotection for the cardiac allograft in combined heart–liver transplantation. Am J Transplant 2016; 16: 35223531.10.1111/ajt.13870CrossRefGoogle ScholarPubMed
Zhao, K, Wang, R, Kamoun, M, et al. Liver allograft provides protection against cardiac allograft rejection in combined heart and liver transplantation [abstract]. Am J Transplant 2019; 19 (Suppl 3).Google Scholar
Zentner, D, Celermajer, DS, Gentles, T, et al. Management of people with a Fontan circulation: a cardiac society of Australia and New Zealand position statement. Hear Lung Circ 2020; 29(1): 539.10.1016/j.hlc.2019.09.010CrossRefGoogle ScholarPubMed
Johnson, JN, Driscoll, DJ, O’Leary, PW. Protein-losing enteropathy and the Fontan operation. Nutr Clin Pract 2012; 27: 375384.CrossRefGoogle ScholarPubMed
John, AS, Johnson, JA, Khan, M, Driscoll, DJ, Warnes, CA, Cetta, F. Clinical outcomes and improved survival in patients with protein-losing enteropathy after the fontan operation. J Am Coll Cardiol 2014; 64: 5462.10.1016/j.jacc.2014.04.025CrossRefGoogle ScholarPubMed
Itkin, M, Piccoli, DA, Nadolski, G, et al. Protein-losing enteropathy in patients with congenital heart disease. J Am Coll Cardiol 2017; 69: 29292937.10.1016/j.jacc.2017.04.023CrossRefGoogle ScholarPubMed
Schumacher, KR, Singh, TP, Kuebler, J, Aprile, K, O’Brien, M, Blume, ED. Risk factors and outcome of Fontan-associated plastic bronchitis: a case-control study. J Am Heart Assoc 2014; 3: e000865.CrossRefGoogle ScholarPubMed
Dori, Y, Keller, MS, Rome, JJ, et al. Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation 2016; 133: 11601170.10.1161/CIRCULATIONAHA.115.019710CrossRefGoogle ScholarPubMed
Avitabile, CM, Goldberg, DJ, Dodds, K, Dori, Y, Ravishankar, C, Rychik, J. A multifaceted approach to the management of plastic bronchitis after cavopulmonary palliation. Ann Thorac Surg 2014; 98: 634640.10.1016/j.athoracsur.2014.04.015CrossRefGoogle ScholarPubMed
Kouatli, AA, Garcia, JA, Zellers, TM, Weinstein, EM, Mahony, L. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation 1997; 96: 15071512.10.1161/01.CIR.96.5.1507CrossRefGoogle Scholar
Wilson, TG, Iyengar, AJ, Winlaw, DS, et al. Use of ACE inhibitors in Fontan: Rational or irrational? Int J Cardiol 2016; 210: 9599.10.1016/j.ijcard.2016.02.089CrossRefGoogle ScholarPubMed
Shaddy, RE, Boucek, MM, Hsu, DT, et al. Carvedilol for children and adolescents with heart failure a randomized controlled trial. JAMA 2007; 298: 11711179.CrossRefGoogle ScholarPubMed
Zafar, F, Lubert, AM, Katz, DA, et al. Long-term kidney function after the Fontan operation. J Am Coll Cardiol 2020; 76: 334341.CrossRefGoogle ScholarPubMed
Thorne, S, MacGregor, A, Nelson-Piercy, C. Risk of contraception and pregnancy in heart disease. Heart 2006; 92: 15201525.10.1136/hrt.2006.095240CrossRefGoogle ScholarPubMed
Marshall, KH, D’Udekem, Y, Sholler, GF, et al. Health-related quality of life in children, adolescents, and adults with a Fontan circulation: a meta-analysis. J Am Heart Assoc 2020; 9: e014172.10.1161/JAHA.119.014172CrossRefGoogle ScholarPubMed