Article contents
Assessing a new coarctation repair simulator based on real patient’s anatomy
Published online by Cambridge University Press: 04 December 2019
Abstract
To perform the preliminary tests of coarctation of aorta repair trainer, evaluate the surgical properties of the simulation and to assess and enhance residents’ skills.
Single patient’s angio-CT anatomy data were converted into magnified 3D-printed model of aortic coarctation with hypoplastic aortic arch, serving for creation of a mould used during wax copies casting. Wax cores were painted with six layers of elastic silicone and melted, yielding phantoms that were consecutively fixed in a mounting with and without a thoracic wall. Simulation included: proximal and distal aortic arch clamping, incision of its lesser curvature, extended end-to-end anastomosis with 7-0 suture. A head-mounted camera video recording enabled anastomosis time and mean one suture bite time evaluation. Leakage assessment was done by a water test.
Two residents performed nine simulations each. Last four runs were performed with thoracic wall attached. All phantoms performed well, enabling tissue-like handling and cutting, excellent suture retention, and satisfactory elasticity. Median anastomosis times were 22′33″ and 24′47″ for phantoms without and with thoracic wall (p = not significant (NS)). Median times needed to pass suture through one side of anastomosis and regrasp needle were, respectively, 9″ and 13″ (p < 0.001). Median total number of leakages per phantom equalled 2 for both difficulty levels. There were no significant inter-resident differences in all assessed parameters.
This medium-fidelity aortic coarctation repair trainer showed its feasibility in replication of major critical steps of the real operation. Objective surgical efficiency parameters could be obtained from each simulation and compared between trainees and at different adjustable difficulty levels.
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press 2019
References
- 3
- Cited by