Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T11:11:19.209Z Has data issue: false hasContentIssue false

Cardiac phenotypic spectrum of KCNT1 mutations

Published online by Cambridge University Press:  04 September 2020

Utkarsh Kohli*
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Comer Children’s Hospital and Pritzker School of Medicine of the University of Chicago, Chicago, IL, USA
Chitra Ravishankar
Affiliation:
Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Douglas Nordli
Affiliation:
Section of Child Neurology, Department of Pediatrics, Pritzker School of Medicine of the University of Chicago, Chicago, IL, USA
*
Address for correspondence: Utkarsh Kohli, Assistant Professor of Pediatrics, Section of Pediatric Cardiology, Department of Pediatrics, Comer Children’s Hospital and the Pritzker School of Medicine of University of Chicago, 5841 S Maryland Ave., Chicago, IL60637, USA. Tel: +1 773 702 6172; Fax: +1 773 702 2319. Email: ukohli@peds.bsd.uchicago.edu/utkarshkohli@gmail.com

Abstract

We report a 10-month-old girl with KCNT1 (c1420C > T; p. Arg474Cys, R474C) mutation-associated epileptic encephalopathy, systemic-to-pulmonary artery “collateralopathy”, and intermittent QTc prolongation. Spontaneous regression of systemic-to-pulmonary artery collateral-mediated left heart dilation was noted in this patient, a finding which was ominous as it heralded the onset of severe pulmonary hypertension. The structural and electrical phenotypic features of KCNT1 mutation-associated heart disease, including the novel findings noted in our patient, are discussed in detail.

Type
Brief Report
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barcia, G, Fleming, MR, Deligniere, A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nature Genetics 2012; 44: 12551259. doi: 10.1038/ng.2441 CrossRefGoogle ScholarPubMed
Bhattacharjee, A, Gan, L, Kaczmarek, LK. Localization of the Slack potassium channel in the rat central nervous system. J Comp Neurol 2002; 454: 241254.CrossRefGoogle ScholarPubMed
de Los Angeles Tejada, M, Stolpe, K, Meinild, AK, Klaerke, DA. Clofilium inhibits slick and slack potassium channels. Biologics 2012; 6: 465470. doi: 10.2147/BTT.S33827.Google ScholarPubMed
Lim, CX, Ricos, MG, Dibbens, LM, Heron, SE. KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 2016; 53: 217225. doi 10.1136/jmedgenet-2015-103508.CrossRefGoogle ScholarPubMed
Ohba, C, Kato, M, Takahashi, N, et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia 2015; 56: e121e128. doi: 10.1111/epi.13072.CrossRefGoogle ScholarPubMed
Shimada, S, Hirano, Y, Ito, S, et al. A novel KCNT1 mutation in a Japanese patient with epilepsy of infancy with migrating focal seizures. Hum Genome Var 2014; 1: 14027. doi: 10.1038/hgv.2014.27.CrossRefGoogle Scholar
Kuchenbuch, M, Barcia, G, Chemaly, N, et al. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142: 29963008. doi: 10.1093/brain/awz240.CrossRefGoogle Scholar
Kawasaki, Y, Kuki, I, Ehara, E, et al. Three cases of KCNT1 mutations: malignant migrating partial seizures in infancy with massive systemic to pulmonary collateral arteries. J Pediatr 2017; 191: 270274. doi: 10.1016/j.jpeds.2017.08.057.CrossRefGoogle ScholarPubMed
Stenson, PD, Mort, M, Ball, EV, Shaw, K, Phillips, A, Cooper, DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Gent 2014; 133: 19.CrossRefGoogle ScholarPubMed
McTague, A, Nair, U, Malhotra, S, et al. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology 2018; 1: e55-e66. doi: 10.1212/WNL.0000000000004762.CrossRefGoogle Scholar
Juang, JM, Lu, TP, Lai, LC, et al. Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep 2014; 4: 6733. doi: 10.1038/srep06733.CrossRefGoogle ScholarPubMed
Barcia, G, Chemaly, N, Kuchenbuch, M, et al. Epilepsy with migrating focal seizures: KCNT1 mutation hotspots and phenotype variability. Neurol Genet 2019; 5: e363. doi: 10.1212/NXG.0000000000000363.CrossRefGoogle ScholarPubMed
Møller, RS, Heron, SE, Larsen, LH, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 2015; 56: e11420. doi: 10.1111/epi.13071.CrossRefGoogle Scholar
Milligan, CJ, Li, M, Gazina, EV, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014; 75: 581–90. doi: 10.1002/ana.24128.CrossRefGoogle ScholarPubMed
Fitzgerald, MP, Fiannacca, M, Smith, DM, et al. Treatment responsiveness in KCNT1-related epilepsy. Neurotherapeutics 2019; 6: 848857. doi: 10.1007/s13311-019-00739-y.CrossRefGoogle Scholar
Yoshitomi, S, Takahashi, Y, Yamaguchi, T, et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord 2019; 21: 4854. doi: 10.1684/epd.2019.1026.Google ScholarPubMed
Numis, AL, Nair, U, Datta, AN, et al. Lack of response to quinidine in KCNT1-related neonatal epilepsy. Epilepsia 2018; 59: 18891898. doi: 10.1111/epi.14551.CrossRefGoogle ScholarPubMed