Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T07:37:30.784Z Has data issue: false hasContentIssue false

Measurement, interpretation and use of haemodynamic parameters in pulmonary hypertension associated with congenital cardiac disease

Published online by Cambridge University Press:  27 August 2009

Antonio Augusto Lopes*
Affiliation:
Department of Paediatric Cardiology and Adult Congenital Heart Disease, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
Patrick W. O’Leary
Affiliation:
Division of Paediatric Cardiology, Mayo Clinic, Rochester, Minnesota, United States of America
*
Correspondence to: Antonio Augusto Lopes, M.D., Director, Dept. Paediatric Cardiology and Adult Congenital Heart Disease, The Heart Institute (InCor) – HC.FMUSP, Av. Dr. Eneas de Carvalho Aguiar, 44, 05403-000 – São Paulo – Brazil. Tel: 55-11-3069-5350; Fax: 55-11-3069-5409; E-mail: aablopes@usp.br

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Medical Education
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berger, RMF. Possibilities and impossibilities in the evaluation of pulmonary vascular disease in congenital heart defects. Eur Heart J 2000; 21: 1727.CrossRefGoogle ScholarPubMed
2. Wilkinson, JL. Congenital heart disease: haemodynamic calculations in the catheter laboratory. Heart 2001; 85: 113120.CrossRefGoogle ScholarPubMed
3. Laird, TH, Stayer, SA, Rivenes, SM, et al. Pulmonary-to-systemic blood flow ratio effects of Sevoflurane, Isoflurane, Halothane, and Fentanyl/Midazolam with 100% oxygen in children with congenital heart disease. Anaesth Analg 2002; 95: 12001206.CrossRefGoogle ScholarPubMed
4. Williams, GD, Jones, TK, Hanson, KA, Morray, JP. The haemodynamic effects of Propofol in children with congenital heart disease. Anaesth Analg 1999; 89: 14111416.CrossRefGoogle ScholarPubMed
5. Öklü, E, Bulutcu, FS, Yalçin, Y, Ozbek, U, Cakali, E, Bayindir, O. Which anaesthetic agent alters the haemodynamic status during paediatric catheterization? Comparison of Propofol versus Ketamine. J Cardiothorac Vasc Anaesth 2003; 17: 686690.CrossRefGoogle ScholarPubMed
6. Berman, W Jr, Fripp, RR, Rubler, M, Alderete, L. Haemodynamic effects of Ketamine in children undergoing cardiac catheterization. Pediatr Cardiol 1990; 11: 7276.CrossRefGoogle ScholarPubMed
7. Jobeir, A, Galal, MO, Bulbul, ZR, Solymar, L, Darwish, A, Schmaltz, AA. Use of low-dose Ketamine and/or Midazolam for paediatric cardiac catheterization: is an anaesthesiologist needed? Pediatr Cardiol 2003; 24: 236243.Google ScholarPubMed
8. Kogan, A, Efrat, R, Katz, J, Vidne, BA. Propofol-Ketamine mixture for anaesthesia in paediatric patients undergoing cardiac catheterization. J Cardiothorac Vasc Anaesth 2003; 17: 691693.CrossRefGoogle ScholarPubMed
9. LaFarge, CG, Miettinen, OS. The estimation of oxygen consumption. Cardiovasc Res 1970; 4: 2330.CrossRefGoogle ScholarPubMed
10. Lindahl, SGE. Oxygen consumption and carbon dioxide elimination in infants and children during anaesthesia and surgery. Br J Anaesth 1989; 62: 7076.CrossRefGoogle ScholarPubMed
11. Bergstra, A, van Dijk, RB, Hillege, HL, Lie, KI, Mook, GA. Assumed oxygen consumption based on calculation from dye dilution cardiac output: an improved formula. Eur Heart J 1995; 16: 698703.CrossRefGoogle ScholarPubMed
12. Lundell, BPW, Casas, ML, Wallgren, CG. Oxygen consumption in infants and children during heart catheterization. Pediatr Cardiol 1996; 17: 207213.CrossRefGoogle ScholarPubMed
13. Shanahan, CL, Wilson, NJ, Gentles, TL, Skinner, JR. The influence of measured versus assumed uptake of oxygen in assessing pulmonary vascular resistance in patients with a bidirectional Glenn anastomosis. Cardiol Young 2003; 13: 137142.CrossRefGoogle ScholarPubMed
14. Berner, M, Beghetti, M, Spahr-Schopfer, I, Oberhansli, I, Friedli, B. Inhaled nitric oxide to test the vasodilator capacity of the pulmonary vascular bed in children with long-standing pulmonary hypertension and congenital heart disease. Am J Cardiol 1996; 77: 532535.CrossRefGoogle ScholarPubMed
15. Atz, AM, Adatia, I, Lock, JE, Wessel, DL. Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. J Am Coll Cardiol 1999; 33: 813819.CrossRefGoogle ScholarPubMed
16. Balzer, DT, Kort, HW, Day, RW, et al. Inhaled nitric oxide as a preoperative test (INOP test I). Circulation 2002; 106 (Suppl I): I76I81.CrossRefGoogle ScholarPubMed
17. Khambdkone, S, Li, J, de Leval, MR, Cullen, S, Deanfield, JE, Redington, AN. Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation 2003; 107: 32043208.CrossRefGoogle Scholar
18. Mair, DD, Hagler, DJ, Puga, FJ, Schaff, HV, Danielson, GK. Fontan operation in 176 patients with tricuspid atresia: results and a proposed new index for patient selection. Circulation 1990; 82 (Suppl): IV169.Google Scholar
19. Roberts, JD Jr, Lang, P, Bigatello, LM, Vlahakes, GJ, Zapol, WM. Inhaled nitric oxide in congenital heart disease. Circulation 1993; 87: 447453.CrossRefGoogle ScholarPubMed
20. Rimensberger, PC, Spahr-Schopfer, I, Berner, M, et al. Inhaled nitric oxide versus aerosolized iloprost in secondary pulmonary hypertension in children with congenital heart disease. Vasodilator capacity and cellular mechanisms. Circulation 2001; 103: 544548.CrossRefGoogle ScholarPubMed
21. Cannon, BC, Feltes, TF, Fraley, JK, Grifka, RG, Riddle, EM, Kovalchin, JP. Nitric oxide in the evaluation of congenital heart disease with pulmonary hypertension: factors related to nitric oxide response. Pediatr Cardiol 2005; 26: 565569.CrossRefGoogle ScholarPubMed
22. Turanlahti, MI, Laitinen, PO, Sarna, SJ, Pesonen, E. Nitric oxide, oxygen, and prostacyclin in children with pulmonary hypertension. Heart 1998; 79: 169174.CrossRefGoogle ScholarPubMed