Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:13:40.496Z Has data issue: false hasContentIssue false

Pulmonary vasodilator therapies in pulmonary arterial hypertension associated with CHD: a systematic review and network meta-analysis

Published online by Cambridge University Press:  01 February 2023

Jun Yasuhara*
Affiliation:
Center for Cardiovascular Research, The Abigail Wexner Research and The Heart Center, Nationwide Children’s Hospital, Columbus, OH, USA
Kae Watanabe
Affiliation:
Division of Pediatric Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Atsuyuki Watanabe
Affiliation:
Division of Hospital Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
Takuro Shirasu
Affiliation:
Department of Surgery and Division of Vascular and Endovascular Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
Yuichi Matsuzaki
Affiliation:
Division of Cardiac Surgery, McGill University, Montréal, Québec, Canada
Hirofumi Watanabe
Affiliation:
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
Hisato Takagi
Affiliation:
Division of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan
Naokata Sumitomo
Affiliation:
Department of Pediatric Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
Toshiki Kuno
Affiliation:
Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
*
Author for correspondence: Jun Yasuhara, MD, Center for Cardiovascular Research, The Abigail Wexner Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA. Tel: +1 614 355 5261; Fax: +1 614 355 5725. E-mails: junyasuhara1016@gmail.com; jun.yasuhara@nationwidechildrens.org

Abstract

The optimal treatment strategy using pulmonary vasodilators in pulmonary arterial hypertension associated with CHD (PAH-CHD) remains controversial. We aimed to compare the efficacy and safety of pulmonary vasodilators in PAH-CHD. PubMed and EMBASE databases were searched through May 2022 and a network meta-analysis was conducted. The primary outcomes were mean difference of changes in 6-minute walk distance, NYHA functional class, and N-terminal pro-brain natriuretic peptide. The secondary outcomes included pulmonary vascular resistance, mean pulmonary arterial pressure, and resting oxygen saturation. We identified 14 studies, yielding 807 patients with PAH-CHD. Bosentan and sildenafil were associated with a significant increase in 6-minute walk distance from baseline compared with placebo (MD 48.92 m, 95% CI 0.32 to 97.55 and MD 59.70 m, 95% CI 0.88 to 118.53, respectively). Bosentan, sildenafil, and combination of bosentan and sildenafil were associated with significant improvement in NYHA functional class compared with placebo (MD −0.33, 95% CI −0.51 to −0.14, MD −0.58, 95% CI −0.75 to −0.22 and MD −0.62, 95% CI −0.92 to −0.31, respectively). Bosentan and sildenafil were also associated with significant improvements in secondary outcomes. These findings were largely confirmed in the subgroup analysis. Various adverse events were reported; however, serious adverse event rates were relatively low (4.8–8.7%), including right heart failure, acute kidney injury, respiratory failure, hypotension, and discontinuation of pulmonary vasodilators. In conclusion, bosentan and sildenafil were the most effective in improving prognostic risk factor such as 6-minute walk distance and NYHA class. Overall, pulmonary vasodilators were well tolerated in PAH-CHD.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gatzoulis, MA, Beghetti, M, Landzberg, MJ, Galiè, N. Pulmonary arterial hypertension associated with congenital heart disease: recent advances and future directions. Int J Cardiol 2014; 177: 340347.10.1016/j.ijcard.2014.09.024CrossRefGoogle ScholarPubMed
van Riel, AC, Schuuring, MJ, van Hessen, ID, et al. Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification. Int J Cardiol 2014; 174: 299305.10.1016/j.ijcard.2014.04.072CrossRefGoogle ScholarPubMed
Diller, GP, Kempny, A, Inuzuka, R, et al. Survival prospects of treatment naïve patients with Eisenmenger: a systematic review of the literature and report of own experience. Heart 2014; 100: 13661372.10.1136/heartjnl-2014-305690CrossRefGoogle Scholar
Rosenzweig, EB, Abman, SH, Adatia, I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J 2019; 53: 53.10.1183/13993003.01916-2018CrossRefGoogle ScholarPubMed
Simonneau, G, Montani, D, Celermajer, DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 53.10.1183/13993003.01913-2018CrossRefGoogle ScholarPubMed
Dimopoulos, K, Diller, GP, Opotowsky, AR, et al. Definition and management of segmental pulmonary hypertension. J Am Heart Assoc 2018; 7: 7.10.1161/JAHA.118.008587CrossRefGoogle ScholarPubMed
Yasuhara, J, Yamagishi, H. Pulmonary arterial hypertension associated with tetralogy of Fallot. Int Heart J 2015; 56.10.1536/ihj.14-351CrossRefGoogle ScholarPubMed
Ridderbos, FJ, Wolff, D, Timmer, A, et al. Adverse pulmonary vascular remodeling in the Fontan circulation. J Heart Lung Transplant 2015; 34: 404413.10.1016/j.healun.2015.01.005CrossRefGoogle ScholarPubMed
Galiè, N, Humbert, M, Vachiery, JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903975.10.1183/13993003.01032-2015CrossRefGoogle Scholar
Galiè, N, Humbert, M, Vachiery, JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67119.10.1093/eurheartj/ehv317CrossRefGoogle Scholar
Galiè, N, Beghetti, M, Gatzoulis, MA, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation 2006; 114: 4854.10.1161/CIRCULATIONAHA.106.630715CrossRefGoogle ScholarPubMed
Iversen, K, Jensen, AS, Jensen, TV, Vejlstrup, NG, Søndergaard, L. Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: a randomized, placebo-controlled, double-blinded trial. Eur Heart J 2010; 31: 11241131.10.1093/eurheartj/ehq011CrossRefGoogle ScholarPubMed
Mukhopadhyay, S, Nathani, S, Yusuf, J, Shrimal, D, Tyagi, S. Clinical efficacy of phosphodiesterase-5 inhibitor tadalafil in Eisenmenger syndrome--a randomized, placebo-controlled, double-blind crossover study. Congenit Heart Dis 2011; 6: 424431.10.1111/j.1747-0803.2011.00561.xCrossRefGoogle ScholarPubMed
Gatzoulis, MA, Landzberg, M, Beghetti, M, et al. Evaluation of macitentan in patients with eisenmenger syndrome. Circulation 2019; 139: 5163.10.1161/CIRCULATIONAHA.118.033575CrossRefGoogle ScholarPubMed
Rosenkranz, S, Ghofrani, HA, Beghetti, M, et al. Riociguat for pulmonary arterial hypertension associated with congenital heart disease. Heart 2015; 101: 17921799.10.1136/heartjnl-2015-307832CrossRefGoogle ScholarPubMed
van Riel, A, Schuuring, MJ, van Hessen, ID, et al. Treatment of pulmonary arterial hypertension in congenital heart disease in Singapore versus the Netherlands: age exceeds ethnicity in influencing clinical outcome. Neth Heart J 2016; 24: 410416.10.1007/s12471-016-0820-zCrossRefGoogle ScholarPubMed
Negoi, RI, Ghiorghiu, I, Filipoiu, F, Hostiuc, M, Negoi, I, Ginghina, C. Severe pulmonary arterial hypertension associated with congenital cardiac shunts: evolution under specific treatment. J Med Life 2017; 10: 131138.Google ScholarPubMed
Clavé, MM, Maeda, NY, Thomaz, AM, Bydlowski, SP, Lopes, AA. Phosphodiesterase type 5 inhibitors improve microvascular dysfunction markers in pulmonary arterial hypertension associated with congenital heart disease. Congenit Heart Dis 2019; 14: 246255.10.1111/chd.12688CrossRefGoogle ScholarPubMed
Beghetti, M, Channick, RN, Chin, KM, et al. Selexipag treatment for pulmonary arterial hypertension associated with congenital heart disease after defect correction: insights from the randomised controlled GRIPHON study. Eur J Heart Fail 2019; 21: 352359.10.1002/ejhf.1375CrossRefGoogle ScholarPubMed
Giardini, A, Balducci, A, Specchia, S, Gargiulo, G, Bonvicini, M, Picchio, FM. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J 2008; 29: 16811687.10.1093/eurheartj/ehn215CrossRefGoogle ScholarPubMed
Schuuring, MJ, Vis, JC, van Dijk, AP, et al. Impact of bosentan on exercise capacity in adults after the Fontan procedure: a randomized controlled trial. Eur J Heart Fail 2013; 15: 690698.10.1093/eurjhf/hft017CrossRefGoogle ScholarPubMed
Hebert, A, Mikkelsen, UR, Thilen, U, et al. Bosentan improves exercise capacity in adolescents and adults after Fontan operation: the TEMPO (Treatment With Endothelin Receptor Antagonist in Fontan Patients, a Randomized, Placebo-Controlled, Double-Blind Study Measuring Peak Oxygen Consumption) study. Circulation 2014; 130: 20212030.10.1161/CIRCULATIONAHA.113.008441CrossRefGoogle ScholarPubMed
Shang, XK, Lu, R, Zhang, X, et al. Efficacy of Bosentan in patients after Fontan procedures: a double-blind, randomized controlled trial. J Huazhong Univ Sci Technolog Med Sci 2016; 36: 534540.10.1007/s11596-016-1621-8CrossRefGoogle ScholarPubMed
Hill, KD, Maharaj, AR, Li, JS, Thompson, E, Barker, PCA, Hornik, CP. A randomized, controlled pharmacokinetic and pharmacodynamics trial of ambrisentan after Fontan surgery. Pediatr Crit Care Med 2020; 21: e795e803.10.1097/PCC.0000000000002410CrossRefGoogle ScholarPubMed
Liberati, A, Altman, DG, Tetzlaff, J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e134.10.1016/j.jclinepi.2009.06.006CrossRefGoogle ScholarPubMed
Humbert, M, Kovacs, G, Hoeper, MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2022.Google ScholarPubMed
Higgins, JP, Altman, DG, Gøtzsche, PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin Res ed) 2011; 343: d5928d5928.10.1136/bmj.d5928CrossRefGoogle ScholarPubMed
Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603605.10.1007/s10654-010-9491-zCrossRefGoogle ScholarPubMed
Egger, M, Davey Smith, G, Schneider, M, Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res ed) 1997; 315: 629634.10.1136/bmj.315.7109.629CrossRefGoogle ScholarPubMed
Neupane, B, Richer, D, Bonner, AJ, Kibret, T, Beyene, J. Network meta-analysis using R: a review of currently available automated packages. PLoS One 2014; 9: e115065.10.1371/journal.pone.0115065CrossRefGoogle Scholar
Rücker, G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods 2012; 3: 312324.10.1002/jrsm.1058CrossRefGoogle ScholarPubMed
Higgins, JP, Thompson, SG, Deeks, JJ, Altman, DG. Measuring inconsistency in meta-analyses. BMJ (Clin Res ed) 2003; 327: 557560.10.1136/bmj.327.7414.557CrossRefGoogle ScholarPubMed
Hoeper, MM, Kramer, T, Pan, Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 2017; 50.10.1183/13993003.00740-2017CrossRefGoogle ScholarPubMed
Boucly, A, Weatherald, J, Savale, L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J 2017; 50: 50.10.1183/13993003.00889-2017CrossRefGoogle ScholarPubMed
Benza, RL, Kanwar, MK, Raina, A, et al. Development and validation of an abridged version of the REVEAL 2.0 risk score calculator, REVEAL lite 2, for use in patients with pulmonary arterial hypertension. Chest 2021; 159: 337346.10.1016/j.chest.2020.08.2069CrossRefGoogle ScholarPubMed
Dimopoulos, K, Inuzuka, R, Goletto, S, et al. Improved survival among patients with Eisenmenger syndrome receiving advanced therapy for pulmonary arterial hypertension. Circulation 2010; 121: 2025.10.1161/CIRCULATIONAHA.109.883876CrossRefGoogle ScholarPubMed
Baumgartner, H, De Backer, J, Babu-Narayan, SV, et al. 2020 ESC Guidelines for the management of adult congenital heart disease: The Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Adult Congenital Heart Disease (ISACHD). Eur Heart J 2020; 42: 563645.10.1093/eurheartj/ehaa554CrossRefGoogle Scholar
Schulze-Neick, I, Gilbert, N, Ewert, R, et al. Adult patients with congenital heart disease and pulmonary arterial hypertension: first open prospective multicenter study of bosentan therapy. Am Heart J 2005; 150: 716716.e12.10.1016/j.ahj.2005.07.005CrossRefGoogle ScholarPubMed
Sitbon, O, Beghetti, M, Petit, J, et al. Bosentan for the treatment of pulmonary arterial hypertension associated with congenital heart defects. Eur J Clin Invest 2006; 36 Suppl. 3: 2531.10.1111/j.1365-2362.2006.01685.xCrossRefGoogle ScholarPubMed
Zeng, WJ, Lu, XL, Xiong, CM, et al. The efficacy and safety of sildenafil in patients with pulmonary arterial hypertension associated with the different types of congenital heart disease. Clin Cardiol 2011; 34: 513518.10.1002/clc.20917CrossRefGoogle ScholarPubMed
Zuckerman, WA, Leaderer, D, Rowan, CA, Mituniewicz, JD, Rosenzweig, EB. Ambrisentan for pulmonary arterial hypertension due to congenital heart disease. Am J Cardiol 2011; 107: 13811385.10.1016/j.amjcard.2010.12.051CrossRefGoogle ScholarPubMed
Manes, A, Palazzini, M, Leci, E, Bacchi Reggiani, ML, Branzi, A, Galiè, N. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: a comparison between clinical subgroups. Eur Heart J 2014; 35: 716724.10.1093/eurheartj/eht072CrossRefGoogle ScholarPubMed
Amedro, P, Gavotto, A, Abassi, H, et al. Efficacy of phosphodiesterase type 5 inhibitors in univentricular congenital heart disease: the SV-INHIBITION study design. ESC Heart Fail 2020; 7: 747756.10.1002/ehf2.12630CrossRefGoogle ScholarPubMed
Goldberg, DJ, Zak, V, Goldstein, BH, et al. Results of the FUEL Trial. Circulation 2020; 141: 641651.10.1161/CIRCULATIONAHA.119.044352CrossRefGoogle ScholarPubMed
Kempny, A, Dimopoulos, K, Alonso-Gonzalez, R, et al. Six-minute walk test distance and resting oxygen saturations but not functional class predict outcome in adult patients with Eisenmenger syndrome. Int J Cardiol 2013; 168: 47844789.10.1016/j.ijcard.2013.07.227CrossRefGoogle Scholar
Van De Bruaene, A, De Meester, P, Voigt, JU, et al. Worsening in oxygen saturation and exercise capacity predict adverse outcome in patients with Eisenmenger syndrome. Int J Cardiol 2013; 168: 13861392.10.1016/j.ijcard.2012.12.021CrossRefGoogle ScholarPubMed
Galiè, N, Barberà, JA, Frost, AE, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 2015; 373: 834844.10.1056/NEJMoa1413687CrossRefGoogle ScholarPubMed
Galiè, N, Channick, RN, Frantz, RP, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 2019; 53: 53.10.1183/13993003.01889-2018CrossRefGoogle ScholarPubMed
Jansa, P, Pulido, T. Macitentan in pulmonary arterial hypertension: a focus on combination therapy in the SERAPHIN trial. Am J Cardiovasc Drugs 2018; 18: 111.10.1007/s40256-017-0260-1CrossRefGoogle ScholarPubMed
Kijima, Y, Akagi, T, Takaya, Y, et al. Treat and repair strategy in patients with atrial septal defect and significant pulmonary arterial hypertension. Circ J 2016; 80: 227234.10.1253/circj.CJ-15-0599CrossRefGoogle ScholarPubMed
Arvind, B, Relan, J, Kothari, SS. Treat and repair" strategy for shunt lesions: a critical review. Pulm Circ 2020; 10: 2045894020917885–9.10.1177/2045894020917885CrossRefGoogle ScholarPubMed
Vis, JC, Duffels, MG, Mulder, P, et al. Prolonged beneficial effect of bosentan treatment and 4-year survival rates in adult patients with pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol 2013; 164: 6469.10.1016/j.ijcard.2011.06.064CrossRefGoogle ScholarPubMed
Clozel, M. Endothelin research and the discovery of macitentan for the treatment of pulmonary arterial hypertension. Am J Physiol Regul Integr Comp Physiol 2016; 311: R721r726.10.1152/ajpregu.00475.2015CrossRefGoogle ScholarPubMed
Galiè, N, Ghofrani, HA, Torbicki, A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005; 353: 21482157.10.1056/NEJMoa050010CrossRefGoogle ScholarPubMed
Mukhopadhyay, S, Sharma, M, Ramakrishnan, S, et al. Phosphodiesterase-5 inhibitor in Eisenmenger syndrome: a preliminary observational study. Circulation 2006; 114: 18071810.10.1161/CIRCULATIONAHA.105.603001CrossRefGoogle ScholarPubMed
D'Alto, M, Romeo, E, Argiento, P, et al. Bosentan-sildenafil association in patients with congenital heart disease-related pulmonary arterial hypertension and Eisenmenger physiology. Int J Cardiol 2012; 155: 378382.10.1016/j.ijcard.2010.10.051CrossRefGoogle ScholarPubMed
Dardi, F, Manes, A, Palazzini, M, et al. Combining bosentan and sildenafil in pulmonary arterial hypertension patients failing monotherapy: real-world insights. Eur Resp J 2015; 46: 414421.10.1183/09031936.00209914CrossRefGoogle ScholarPubMed
Durongpisitkul, K, Chungsomprasong, P, Vijarnsorn, C, Chanthong, P, Kanjanauthai, S, Soongswang, J. Improved low-risk criteria scores for combination therapy of sildenafil and generic bosentan in patients with congenital heart disease with severe pulmonary hypertension: a prospective open label study. JRSM Cardiovasc Dis 2021; 10: 2048004020982213.Google ScholarPubMed
Chida-Nagai, A, Sagawa, K, Tsujioka, T, et al. Pulmonary vasodilators can lead to various complications in pulmonary "arterial" hypertension associated with congenital heart disease. Heart Vessels 2020; 35: 13071315.10.1007/s00380-020-01604-1CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Yasuhara et al. supplementary material

Yasuhara et al. supplementary material

Download Yasuhara et al. supplementary material(PDF)
PDF 12.1 MB