Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:03:17.237Z Has data issue: false hasContentIssue false

Sudden cardiac death in the young: the bogeyman

Published online by Cambridge University Press:  17 September 2014

Alessandro Durante*
Affiliation:
Ospedale Valduce, ComoItaly
Pietro L. Laforgia
Affiliation:
Università Vita-Salute San Raffaele, Milan, Italy
Andrea Aurelio
Affiliation:
Università Vita-Salute San Raffaele, Milan, Italy
Giovanni Foglia-Manzillo
Affiliation:
Ospedale Valduce, ComoItaly
Sofia Bronzato
Affiliation:
Università Vita-Salute San Raffaele, Milan, Italy
Mauro Santarone
Affiliation:
Ospedale Valduce, ComoItaly
Giovanni Corrado
Affiliation:
Ospedale Valduce, ComoItaly
*
Correspondence to: A. Durante, MD, Ospedale Valduce, Como, Via Dante 11, Como 22100, Italy. Tel: +39 388 0493877; Fax: 031 3080047; Email: durante.alessandro@gmail.com

Abstract

Sudden cardiac death in the young is a relatively uncommon but marked event usually related to congenital diseases or anomalies. Despite the prevalence of each condition being variable, most common causes include primary myocardial diseases and arrhythmic disorder, frequently with inheritance pattern. Sudden cardiac death is usually preceded by symptoms, thus making personal and family history fundamental for its prevention. Nevertheless, in more than 50% of cases, sudden cardiac death is the first manifestation of the disease. In this review, we describe the different causes of sudden cardiac death, their incidence, and currently used preventive strategies.

Type
Review Articles
Copyright
© Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Corrado, D, Basso, C, Pavei, A, et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. J Am Med Assoc 2006; 296: 15931601.Google Scholar
2. Meyer, L, Stubbs, B, Fahrenbruch, C, et al. Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review. Circulation 2012; 126: 13631372.Google Scholar
3. Triedman, JK, Alexander, ME. Needle in a haystack: modeling the incidence of sudden cardiac arrest in healthy children. Circulation 2010; 121: 12831285.Google Scholar
4. Maron, BJ, Doerer, JJ, Haas, TS, Tierney, DM, Mueller, FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 2009; 119: 10851092.CrossRefGoogle ScholarPubMed
5. Atkins, DL, Everson-Stewart, S, Sears, GK, et al. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation 2009; 119: 14841491.Google Scholar
6. Driscoll, DJ, Edwards, WD. Sudden unexpected death in children and adolescents. J Am Coll Cardiol 1985; 5: 118B121B.Google Scholar
7. Donohoe, RT, Innes, J, Gadd, S, Whitbread, M, Moore, F. Out-of-hospital cardiac arrest in patients aged 35 years and under: a 4-year study of frequency and survival in London. Resuscitation 2010; 81: 3641.CrossRefGoogle Scholar
8. Decree of the Italian Ministry of Health F. Norme per la tutela sanitaria dell’attività sportiva agonistica. Gazzetta Ufficiale della Repubblica Italiana 1982; 63.Google Scholar
9. Corrado, D, Basso, C, Rizzoli, G, Schiavon, M, Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol 2003; 42: 19591963.Google Scholar
10. Spurgeon, D. Sudden cardiac deaths rise 10% in young Americans. BMJ 2001; 322: 573.Google Scholar
11. SoRelle, R. Jump in sudden cardiac deaths reported in younger people during past decade. Circulation 2001; 103: E9019E9021.Google Scholar
12. Gajewski, KK, Saul, JP. Sudden cardiac death in children and adolescents (excluding sudden infant death syndrome). Ann Pediatr Cardiol 2010; 3: 107112.Google Scholar
13. Corrado, D, Schmied, C, Basso, C, et al. Risk of sports: do we need a pre-participation screening for competitive and leisure athletes? Eur Heart J 2011; 32: 934944.Google Scholar
14. Section on Cardiology and Cardiac Surgery. Pediatric sudden cardiac arrest. Pediatrics 2012; 129: e1094e1102.Google Scholar
15. Chandra, N, Bastiaenen, R, Papadakis, M, Sharma, S. Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol 2013; 61: 10271040.Google Scholar
16. Maron, BJ. Sudden death in young athletes. New Eng J Med 2003; 349: 10641075.Google Scholar
17. Rubens, D, Sarnat, HB. Sudden infant death syndrome: an update and new perspectives of etiology. Handb Clin Neurol 2013; 112: 867874.Google Scholar
18. Tfelt-Hansen, J, Winkel, BG, Grunnet, M, Jespersen, T. Cardiac channelopathies and sudden infant death syndrome. Cardiology 2011; 119: 2133.Google Scholar
19. Berkowitz, CD. Sudden infant death syndrome, sudden unexpected infant death, and apparent life-threatening events. Adv Pediatr 2012; 59: 183208.Google Scholar
20. Corrado, D, Basso, C, Poletti, A, et al. Sudden death in the young. Is acute coronary thrombosis the major precipitating factor? Circulation 1994; 90: 23152323.Google Scholar
21. Liberthson, RR. Sudden death from cardiac causes in children and young adults. New Eng J Med 1996; 334: 10391044.Google Scholar
22. Davis, JA, Cecchin, F, Jones, TK, Portman, MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 2001; 37: 593597.Google Scholar
23. Taylor, AJ, Byers, JP, Cheitlin, MD, Virmani, R. Anomalous right or left coronary artery from the contralateral coronary sinus: “high-risk” abnormalities in the initial coronary artery course and heterogeneous clinical outcomes. Am Heart J 1997; 133: 428435.Google Scholar
24. Uysal, F, Bostan, OM, Semizel, E, et al. Congenital anomalies of coronary arteries in children: the evaluation of 22 patients. Pediatr Cardiol 2013; 35: 778784.Google Scholar
25. Labombarda, F, Coutance, G, Pellissier, A, et al. Major congenital coronary artery anomalies in a paediatric and adult population: a prospective echocardiographic study. Eur Heart J Cardiovasc Imag 2014; 15: 761768.Google Scholar
26. Angelini, P. Coronary artery anomalies: an entity in search of an identity. Circulation 2007; 115: 12961305.CrossRefGoogle ScholarPubMed
27. Attili, A, Hensley, AK, Jones, FD, Grabham, J, DiSessa, TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography 2013; 30: 225233.Google Scholar
28. Wood, LE, Tulloh, RM. Kawasaki disease in children. Heart 2009; 95: 787792.Google Scholar
29. Rozin, L, Koehler, SA, Shakir, A, Ladham, S, Wecht, CH. Kawasaki disease: a review of pathologic features of stage IV disease and two cases of sudden death among asymptotic young adults. Am J Forensic Med Pathol 2003; 24: 4550.Google Scholar
30. Okura, N, Okuda, T, Shiotani, S, et al. Sudden death as a late sequel of Kawasaki disease: postmortem CT demonstration of coronary artery aneurysm. Forensic Sci Int 2013; 225: 8588.Google Scholar
31. Suzuki, A, Kamiya, T, Arakaki, Y, Kinoshita, Y, Kimura, K. Fate of coronary arterial aneurysms in Kawasaki disease. Am J Cardiol 1994; 74: 822824.Google Scholar
32. Berger, S, Campbell, RM. Sudden cardiac death in children and adolescents: introduction and overview. Pacing Clin Electrophysiol 2009; 32 (Suppl 2): S2S5.Google Scholar
33. Basso, C, Corrado, D, Thiene, G. Cardiovascular causes of sudden death in young individuals including athletes. Cardiol Rev 1999; 7: 127135.Google Scholar
34. Maron, BJ, Maron, MS. Hypertrophic cardiomyopathy. Lancet 2013; 381: 242255.Google Scholar
35. Moak, JP, Kaski, JP. Hypertrophic cardiomyopathy in children. Heart 2012; 98: 10441054.Google Scholar
36. Wren, C. Sudden death in children and adolescents. Heart 2002; 88: 426431.Google Scholar
37. Corrado, D, Basso, C, Schiavon, M, Thiene, G. Screening for hypertrophic cardiomyopathy in young athletes. New Eng J Med 1998; 339: 364369.Google Scholar
38. Keren, A, Syrris, P, McKenna, WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med 2008; 5: 158168.CrossRefGoogle ScholarPubMed
39. Basso, C, Bauce, B, Corrado, D, Thiene, G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 2012; 9: 223233.CrossRefGoogle Scholar
40. Azaouagh, A, Churzidse, S, Konorza, T, Erbel, R. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 2011; 100: 383394.Google Scholar
41. Rigato, I, Bauce, B, Rampazzo, A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 2013; 6: 533542.Google Scholar
42. Marcus, FI, Edson, S, Towbin, JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 2013; 61: 19451948.Google Scholar
43. John, RM, Tedrow, UB, Koplan, BA, et al. Ventricular arrhythmias and sudden cardiac death. Lancet 2012; 380: 15201529.Google Scholar
44. Basso, C, Corrado, D, Marcus, FI, Nava, A, Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 2009; 373: 12891300.Google Scholar
45. Marcus, FI, McKenna, WJ, Sherrill, D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 2010; 31: 806814.Google Scholar
46. Marcus, FI. Prevalence of T-wave inversion beyond V1 in young normal individuals and usefulness for the diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Am J Cardiol 2005; 95: 10701071.Google Scholar
47. Gomes, J, Finlay, M, Ahmed, AK, et al. Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin – a combined murine and human study. Eur Heart J 2012; 33: 19421953.Google Scholar
48. Borjesson, M, Pelliccia, A. Incidence and aetiology of sudden cardiac death in young athletes: an international perspective. Br J Sports Med 2009; 43: 644648.Google Scholar
49. Hershberger, RE, Siegfried, JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2011; 57: 16411649.CrossRefGoogle ScholarPubMed
50. Hamilton, RM, Azevedo, ER. Sudden cardiac death in dilated cardiomyopathies. Pacing Clin Electrophysiol 2009; 32 (Suppl 2): S32S40.Google Scholar
51. Grimm, W, Maisch, B. Sudden cardiac death in dilated cardiomyopathy – therapeutic options. Herz 2002; 27: 750759.Google Scholar
52. Gavazzi, A, De Maria, R, Renosto, G, et al. The spectrum of left ventricular size in dilated cardiomyopathy: clinical correlates and prognostic implications. SPIC (Italian Multicenter Cardiomyopathy Study) Group. Am Heart J 1993; 125: 410422.Google Scholar
53. Burch, M, Siddiqi, SA, Celermajer, DS, et al. Dilated cardiomyopathy in children: determinants of outcome. Br Heart J 1994; 72: 246250.Google Scholar
54. Meune, C, Van Berlo, JH, Anselme, F, et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. New Eng J Med 2006; 354: 209210.Google Scholar
55. Puranik, R, Chow, CK, Duflou, JA, Kilborn, MJ, McGuire, MA. Sudden death in the young. Heart Rhythm 2005; 2: 12771282.Google Scholar
56. Gaaloul, I, Riabi, S, Harrath, R, et al. Sudden unexpected death related to enterovirus myocarditis: histopathology, immunohistochemistry and molecular pathology diagnosis at post-mortem. BMC Infect Dis 2012; 12: 212.Google Scholar
57. Feldman, AM, McNamara, D. Myocarditis. New Eng J Med 2000; 343: 13881398.Google Scholar
58. Kyto, V, Saukko, P, Lignitz, E, et al. Diagnosis and presentation of fatal myocarditis. Hum Pathol 2005; 36: 10031007.CrossRefGoogle ScholarPubMed
59. Berul, CI. Neonatal long QT syndrome and sudden cardiac death. Prog Pediatr Cardiol 2000; 11: 4754.Google Scholar
60. Schwartz, PJ, Stramba-Badiale, M, Crotti, L, et al. Prevalence of the congenital long-QT syndrome. Circulation 2009; 120: 17611767.Google Scholar
61. Schwartz, PJ, Spazzolini, C, Priori, SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 2010; 122: 12721282.Google Scholar
62. Vincent, GM, Timothy, KW, Leppert, M, Keating, M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. New Eng J Med 1992; 327: 846852.Google Scholar
63. Lu, JT, Kass, RS. Recent progress in congenital long QT syndrome. Curr Opin Cardiol 2010; 25: 216221.Google Scholar
64. Ocal, B, Imamoglu, A, Atalay, S, Ercan Tutar, H. Prevalence of idiopathic long QT syndrome in children with congenital deafness. Pediatr Cardiol 1997; 18: 401405.Google Scholar
65. Ellinor, PT, Milan, DJ, MacRae, CA. Risk stratification in the long-QT syndrome. New Eng J Med 2003; 349: 908909.Google Scholar
66. Tranebjaerg, L, Samson, RA, GE, Green. Jervell and Lange-Nielsen Syndrome. In Pagon RA, Adam MP, Ardinger HH, et al. (eds.), GeneReviews(R). University of Washington, Seattle, WA, 1993.Google Scholar
67. Schwartz, PJ, Priori, SG, Spazzolini, C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103: 8995.Google Scholar
68. Vincent, GM. Role of DNA testing for diagnosis, management, and genetic screening in long QT syndrome, hypertrophic cardiomyopathy, and Marfan syndrome. Heart 2001; 86: 1214.Google Scholar
69. Abrams, DJ, Macrae, CA. Long QT syndrome. Circulation 2014; 129: 15241529.Google Scholar
70. Hofman, N, Wilde, AA, Kaab, S, et al. Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system? Eur Heart J 2007; 28: 575580.Google Scholar
71. Barsheshet, A, Dotsenko, O, Goldenberg, I. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol 2013; 18: 499509.Google Scholar
72. Schwartz, PJ. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol 2014; 11: 346353.CrossRefGoogle ScholarPubMed
73. Algra, A, Tijssen, JG, Roelandt, JR, Pool, J, Lubsen, J. QT interval variables from 24 hour electrocardiography and the two year risk of sudden death. Br Heart J 1993; 70: 4348.Google Scholar
74. Gaita, F, Giustetto, C, Bianchi, F, et al. Short QT Syndrome: a familial cause of sudden death. Circulation 2003; 108: 965970.Google Scholar
75. Crotti, L, Taravelli, E, Girardengo, G, Schwartz, PJ. Congenital short QT syndrome. Indian Pacing Electrophysiol J 2010; 10: 8695.Google Scholar
76. Lu, LX, Zhou, W, Zhang, X, et al. Short QT syndrome: a case report and review of literature. Resuscitation 2006; 71: 115121.Google Scholar
77. Giustetto, C, Di Monte, F, Wolpert, C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J 2006; 27: 24402447.Google Scholar
78. Boriani, G, Biffi, M, Valzania, C, Bronzetti, G, Martignani, C. Short QT syndrome and arrhythmogenic cardiac diseases in the young: the challenge of implantable cardioverter-defibrillator therapy for children. Eur Heart J 2006; 27: 23822384.Google Scholar
79. van der Werf, C, Wilde, AA. Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart 2013; 99: 497504.Google Scholar
80. Arias, MA, Fernandez-Guerrero, JC, Herrador, J, Pagola, C. Catecholaminergic polymorphic ventricular tachycardia as a cause of sudden death in athletes. Am J Emerg Med 2006; 24: 253254.Google Scholar
81. Uchinoumi, H, Yano, M, Suetomi, T, et al. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res 2010; 106: 14131424.Google Scholar
82. Kontula, K, Laitinen, PJ, Lehtonen, A, et al. Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights. Cardiovasc Res 2005; 67: 379387.Google Scholar
83. Tester, DJ, Dura, M, Carturan, E, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 2007; 4: 733739.Google Scholar
84. Sumitomo, N, Harada, K, Nagashima, M, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 2003; 89: 6670.Google Scholar
85. Napolitano, C, Priori, SG. Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2007; 4: 675678.Google Scholar
86. Pflaumer, A, Davis, AM. Guidelines for the diagnosis and management of catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ 2012; 21: 96100.Google Scholar
87. Watanabe, H, Chopra, N, Laver, D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 2009; 15: 380383.Google Scholar
88. van der Werf, C, Kannankeril, PJ, Sacher, F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol 2011; 57: 22442254.Google Scholar
89. Wilde, AA, Bhuiyan, ZA, Crotti, L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. New Eng J Med 2008; 358: 20242029.Google Scholar
90. Liu, N, Ruan, Y, Denegri, M, et al. Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/−) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol 2011; 50: 214222.Google Scholar
91. Napolitano, C, Liu, N, Priori, SG. Role of calmodulin kinase in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2011; 8: 16011605.Google Scholar
92. Brugada, P, Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992; 20: 13911396.Google Scholar
93. Nademanee, K, Veerakul, G, Nimmannit, S, et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997; 96: 25952600.Google Scholar
94. Hermida, JS, Lemoine, JL, Aoun, FB, et al. Prevalence of the Brugada syndrome in an apparently healthy population. Am J Cardiol 2000; 86: 9194.CrossRefGoogle Scholar
95. Postema, PG. About Brugada syndrome and its prevalence. Europace 2012; 14: 925928.CrossRefGoogle ScholarPubMed
96. Viskin, S, Rosso, R. Risk of sudden death in asymptomatic Brugada syndrome: not as high as we thought and not as low as we wished...but the contrary. J Am Coll Cardiol 2010; 56: 15851588.Google Scholar
97. Crotti, L, Marcou, CA, Tester, DJ, et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol 2012; 60: 14101418.Google Scholar
98. Skinner, JR, Love, DR. The SCN5A gene in Brugada syndrome: mutations, variants, missense and nonsense. What’s a clinician to do? Heart Rhythm 2010; 7: 5051.Google Scholar
99. Morita, H, Kusano-Fukushima, K, Nagase, S, et al. Atrial fibrillation and atrial vulnerability in patients with Brugada syndrome. J Am Coll Cardiol 2002; 40: 14371444.CrossRefGoogle ScholarPubMed
100. Morita, H, Fukushima-Kusano, K, Nagase, S, et al. Sinus node function in patients with Brugada-type ECG. Circ J 2004; 68: 473476.Google Scholar
101. Bordachar, P, Reuter, S, Garrigue, S, et al. Incidence, clinical implications and prognosis of atrial arrhythmias in Brugada syndrome. Eur Heart J 2004; 25: 879884.Google Scholar
102. Fazio, G, Augugliaro, S, Lunetta, M, et al. Wolff–Parkinson–White syndrome associated with Brugada syndrome. Minerva Cardioangiol 2009; 57: 361364.Google Scholar
103. Priori, SG, Napolitano, C, Giordano, U, Collisani, G, Memmi, M. Brugada syndrome and sudden cardiac death in children. Lancet 2000; 355: 808809.Google Scholar
104. Wilde, AA, Priori, SG. Brugada syndrome and sudden death. Eur Heart J 2000; 21: 14831484.Google Scholar
105. Sidik, NP, Quay, CN, Loh, FC, Chen, LY. Prevalence of Brugada sign and syndrome in patients presenting with arrhythmic symptoms at a Heart Rhythm Clinic in Singapore. Europace 2009; 11: 650656.Google Scholar
106. Richter, S, Sarkozy, A, Paparella, G, et al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consesus criterion to be revised. Eur Heart J 2010; 11: 13571364.Google Scholar
107. Antzelevitch, C, Brugada, P, Borggrefe, M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 2005; 111: 659670.Google Scholar
108. Yokokawa, M, Noda, T, Okamura, H, et al. Comparison of long-term follow-up of electrocardiographic features in Brugada syndrome between the SCN5A-positive probands and the SCN5A-negative probands. Am J Cardiol 2007; 100: 649655.Google Scholar
109. Smits, JP, Eckardt, L, Probst, V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 2002; 40: 350356.Google Scholar
110. Mizusawa, Y, Sakurada, H, Nishizaki, M, Hiraoka, M. Effects of low-dose quinidine on ventricular tachyarrhythmias in patients with Brugada syndrome: low-dose quinidine therapy as an adjunctive treatment. J Cardiovasc Pharmacol 2006; 47: 359364.Google Scholar
111. Belhassen, B. Is quinidine the ideal drug for brugada syndrome? Heart Rhythm 2012; 9: 20012002.Google Scholar
112. Arbelo, E, Brugada, J. Risk stratification and treatment of Brugada syndrome. Curr Cardiol Rep 2014; 16: 508.Google Scholar
113. Priori, SG, Gasparini, M, Napolitano, C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol 2012; 59: 3745.Google Scholar
114. Brugada, J, Brugada, R, Brugada, P. Pharmacological and device approach to therapy of inherited cardiac diseases associated with cardiac arrhythmias and sudden death. J Electrocardiol 2000; 33 (Suppl): 4147.Google Scholar
115. Brugada, J, Brugada, R, Brugada, P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 2003; 108: 30923096.Google Scholar
116. Wolff, L, Parkinson, J, White, PD. Bundle-branch block with short P-R interval in healthy young people prone to paroxysmal tachycardia. 1930. Ann Noninvasive Electrocardiol 2006; 11: 340353.Google Scholar
117. Guize, L, Soria, R, Chaouat, JC, et al. Prevalence and course of Wolf–Parkinson–White syndrome in a population of 138,048 subjects. Ann De Med Interne 1985; 136: 474478.Google Scholar
118. Pediatric and Congenital Electrophysiology Society, Heart Rhythm Society, American College of Cardiology Foundation, American Heart Association, American Academy of Pediatrics, Canadian Heart Rhythm Society, Cohen, MI, Triedman, JK, Cannon, BC, et al. PACES/HRS expert consensus statement on the management of the asymptomatic young patient with a Wolff-Parkinson-White (WPW, ventricular preexcitation) electrocardiographic pattern: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology Foundation (ACCF), the American Heart Association (AHA), the American Academy of Pediatrics (AAP), and the Canadian Heart Rhythm Society (CHRS) Heart Rhythm 2012; 9: 10061024.Google Scholar
119. Cain, N, Irving, C, Webber, S, Beerman, L, Arora, G. Natural history of Wolff–Parkinson–White syndrome diagnosed in childhood. Am J Cardiol 2013; 112: 961965.Google Scholar
120. Klein, GJ, Bashore, TM, Sellers, TD, et al. Ventricular fibrillation in the Wolff–Parkinson–White syndrome. New Eng J Med 1979; 301: 10801085.Google Scholar
121. Obeyesekere, MN, Leong-Sit, P, Massel, D, et al. Risk of arrhythmia and sudden death in patients with asymptomatic preexcitation: a meta-analysis. Circulation 2012; 125: 23082315.Google Scholar
122. Kerst, G, Parade, U, Weig, HJ, Hofbeck, M, Gawaz, M, Schreieck, J. A novel technique for zero-fluoroscopy catheter ablation used to manage Wollf–Parkinson–White syndrome with a left-sided accessory pathway. Pediatr Cardiol 2012; 33: 820823.Google Scholar
123. Fernandez-Gomez, JM, Morina-Vazquez, P, Morales, EDR, et al. Exclusion of fluoroscopy use in catheter ablation procedures: six years of experience at a single center. J Cardiovasc Electrophysiol 2014; 6: 638644.Google Scholar
124. Anselmino, M, Sillano, D, Casolati, D, Ferraris, F, Scaglione, M, Gaita, F. A new electrophysiology era: zero fluoroscopy. J Cardiovasc Med (Hagerstown) 2013; 14: 221227.Google Scholar
125. Antz, M, Weiss, C, Volkmer, M, et al. Risk of sudden death after successful accessory atrioventricular pathway ablation in resuscitated patients with Wolff–Parkinson–White syndrome. J Cardiovasc Electrophysiol 2002; 13: 231236.Google Scholar
126. Hoffmayer, KS, Gerstenfeld, EP. Diagnosis and management of idiopathic ventricular tachycardia. Curr Probl Cardiol 2013; 38: 131158.Google Scholar
127. Lerman, BB. Response of nonreentrant catecholamine-mediated ventricular tachycardia to endogenous adenosine and acetylcholine. Evidence for myocardial receptor-mediated effects. Circulation 1993; 87: 382390.Google Scholar
128. Yarlagadda, RK, Iwai, S, Stein, KM, et al. Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 2005; 112: 10921097.Google Scholar
129. Viskin, S, Rosso, R, Rogowski, O, Belhassen, B. The “short-coupled” variant of right ventricular outflow ventricular tachycardia: a not-so-benign form of benign ventricular tachycardia? J Cardiovasc Electrophysiol 2005; 16: 912916.Google Scholar
130. Altemose, GT, Buxton, AE. Idiopathic ventricular tachycardia. Ann Rev Med 1999; 50: 159177.Google Scholar
131. Silka, MJ, Hardy, BG, Menashe, VD, Morris, CD. A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. J Am Coll Cardiol 1998; 32: 245251.Google Scholar
132. Wren, C, Irving, CA, Griffiths, JA, et al. Mortality in infants with cardiovascular malformations. Eur J Pediatr 2012; 171: 281287.Google Scholar
133. Khairy, P, Van Hare, GF, Balaji, S, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease. Heart Rhythm 2014; EPub ahead of print, doi:10.1016/j.hrthm.2014.05.009.Google Scholar
134. Mondesert, B, Khairy, P. Implantable cardioverter-defibrillators in congenital heart disease. Curr Opin Cardiol 2014; 29: 4552.Google Scholar
135. Savolainen, A, Kupari, M, Toivonen, L, Kaitila, I, Viitasalo, M. Abnormal ambulatory electrocardiographic findings in patients with the Marfan syndrome. J Intern Med 1997; 241: 221226.Google Scholar
136. Yetman, AT, Bornemeier, RA, McCrindle, BW. Long-term outcome in patients with Marfan syndrome: is aortic dissection the only cause of sudden death? J Am Coll Cardiol 2003; 41: 329332.Google Scholar
137. Devereux, RB, Roman, MJ. Aortic disease in Marfan’s syndrome. New Eng J Med 1999; 340: 13581359.Google Scholar
138. Anders, S, Said, S, Schulz, F, Puschel, K. Mitral valve prolapse syndrome as cause of sudden death in young adults. Forensic Sci Int 2007; 171: 127130.Google Scholar
139. Kligfield, P, Levy, D, Devereux, RB, Savage, DD. Arrhythmias and sudden death in mitral valve prolapse. Am Heart J 1987; 113: 12981307.Google Scholar
140. Jeresaty, RM. Mitral valve prolapse: definition and implications in athletes. J Am College Cardiol 1986; 7: 231236.Google Scholar
141. Rich, S, Dantzker, DR, Ayres, SM, et al. Primary pulmonary hypertension. A national prospective study. Ann Int Med 1987; 107: 216223.Google Scholar
142. Gaine, SP, Rubin, LJ. Primary pulmonary hypertension. Lancet 1998; 352: 719725.Google Scholar
143. Kawato, H, Hitosugi, M, Kido, M, et al. An autopsy case of sudden death in a boy with primary pulmonary hypertension: a case report. Med Sci Law 2005; 45: 361363.Google Scholar
144. Runo, JR, Loyd, JE. Primary pulmonary hypertension. Lancet 2003; 361: 15331544.Google Scholar
145. Tonelli, AR, Arelli, V, Minai, OA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 188: 365369.Google Scholar
146. Hausmann, R, Hammer, S, Betz, P. Performance enhancing drugs (doping agents) and sudden death – a case report and review of the literature. Int J Leg Med 1998; 111: 261264.Google Scholar
147. Dhar, R, Stout, CW, Link, MS, et al. Cardiovascular toxicities of performance-enhancing substances in sports. Mayo Clin Proc 2005; 80: 13071315.CrossRefGoogle ScholarPubMed
148. Isner, JM, Estes, NA 3rd, Thompson, PD, et al. Acute cardiac events temporally related to cocaine abuse. New Eng J Med 1986; 315: 14381443.Google Scholar
149. Raymond, JR, van den Berg, EK Jr., Knapp, MJ. Nontraumatic prehospital sudden death in young adults. Arch Int Med 1988; 148: 303308.Google Scholar
150. Taylor, D. Psychotropic drugs, torsade de pointes and sudden death. Acta Psychiatr Scand 2005; 111: 169170.Google Scholar
151. Chong, S. Psychotropic drugs and sudden death. Br J Psychiatry 2001; 178: 179180.Google Scholar
152. Maron, BJ, Gohman, TE, Kyle, SB, Estes, NA 3rd, Link, MS. Clinical Profile and Spectrum of Commotio Cordis. J Am Med Assoc 2002; 287: 11421146.Google Scholar
153. Maron, BJ, Doerer, JJ, Haas, TS, et al. Commotio cordis and the epidemiology of sudden death in competitive lacrosse. Pediatrics 2009; 124: 966971.Google Scholar
154. Maron, BJ, Boren, SD, Estes, NA 3rd. Early descriptions of sudden cardiac death due to commotio cordis occurring in baseball. Heart Rhythm 2010; 7: 992993.Google Scholar
155. Alsheikh-Ali, AA, Madias, C, Supran, S, Link, MS. Marked variability in susceptibility to ventricular fibrillation in an experimental commotio cordis model. Circulation 2010; 122: 24992504.Google Scholar
156. Link, MS, Wang, PJ, Pandian, NG, et al. An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis). New Eng J Med 1998; 338: 18051811.Google Scholar
157. Doerer, JJ, Haas, TS, Estes, NA 3rd, Link, MS, Maron, BJ. Evaluation of chest barriers for protection against sudden death due to commotio cordis. Am J Cardiol 2007; 99: 857859.Google Scholar
158. Wisten, A, Messner, T. Symptoms preceding sudden cardiac death in the young are common but often misinterpreted. Scand Cardiovasc J 2005; 39: 143149.Google Scholar
159. Jabbari, R, Risgaard, B, Holst, AG, et al. Cardiac symptoms before sudden cardiac death caused by coronary artery disease: a nationwide study among young Danish people. Heart 2013; 99: 938943.CrossRefGoogle ScholarPubMed
160. Drezner, JA, Fudge, J, Harmon, KG, et al. Warning symptoms and family history in children and young adults with sudden cardiac arrest. J Am Board Fam Med 2012; 25: 408415.Google Scholar
161. Ino, T, Yabuta, K, Yamauchi, K. Heart disease screening in Japanese children. Br Med J 1993; 306: 1128.Google Scholar
162. Vetter, VL, Dugan, N, Guo, R, et al. A pilot study of the feasibility of heart screening for sudden cardiac arrest in healthy children. Am Heart J 2011; 161: e1003.Google Scholar
163. Asif, IM, Rao, AL, Drezner, JA. Sudden cardiac death in young athletes: what is the role of screening? Curr Opin Cardiol 2013; 28: 5562.Google Scholar
164. Rodday, AM, Triedman, JK, Alexander, ME, et al. Electrocardiogram screening for disorders that cause sudden cardiac death in asymptomatic children: a meta-analysis. Pediatrics 2012; 129: e999e1010.Google Scholar
165. Haneda, N, Mori, C, Nishio, T, et al. Heart diseases discovered by mass screening in the schools of Shimane Prefecture over a period of 5 years. Jpn Circ J 1986; 50: 13251329.Google Scholar
166. Fuller, CM, McNulty, CM, Spring, DA, et al. Prospective screening of 5,615 high school athletes for risk of sudden cardiac death. Med Sci Sports Exerc 1997; 29: 11311138.Google Scholar
167. Steinvil, A, Chundadze, T, Zeltser, D, et al. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death proven fact or wishful thinking? J Am Coll Cardiol 2011; 57: 12911296.Google Scholar
168. Maron, BJ, Bodison, SA, Wesley, YE, Tucker, E, Green, KJ. Results of screening a large group of intercollegiate competitive athletes for cardiovascular disease. J Am Coll Cardiol 1987; 10: 12141221.Google Scholar
169. Maron, BJ, Thompson, PD, Ackerman, MJ, et al. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation 2007; 115: 16431655.Google Scholar
170. Maron, BJ, Haas, TS, Doerer, JJ, Thompson, PD, Hodges, JS. Comparison of U.S. and Italian experiences with sudden cardiac deaths in young competitive athletes and implications for preparticipation screening strategies. Am J Cardiol 2009; 104: 276280.CrossRefGoogle ScholarPubMed
171. Pelliccia, A, Maron, BJ, Culasso, F, et al. Clinical significance of abnormal electrocardiographic patterns in trained athletes. Circulation 2000; 102: 278284.Google Scholar
172. Schoenbaum, M, Denchev, P, Vitiello, B, Kaltman, JR. Economic evaluation of strategies to reduce sudden cardiac death in young athletes. Pediatrics 2012; 130: e380e389.Google Scholar
173. Mitka, M. US registry for sudden death in the young launched by the NIH and CDC. J Am Med Assoc 2013; 310: 2495.Google Scholar
174. Crystal, MA, Syan, SK, Yeung, RS, Dipchand, AI, McCrindle, BW. Echocardiographic and electrocardiographic trends in children with acute Kawasaki disease. Can J Cardiol 2008; 24: 776780.Google Scholar
175. Piccini, JP, Nasir, K, Bomma, C, et al. Electrocardiographic findings over time in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol 2005; 96: 122126.Google Scholar
176. McKenna, WJ, Thiene, G, Nava, A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 1994; 71: 215218.Google Scholar
177. Malfatto, G, Beria, G, Sala, S, Bonazzi, O, Schwartz, PJ. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol 1994; 23: 296301.Google Scholar
178. Bar-Cohen, Y, Silka, MJ. Congenital long QT syndrome: diagnosis and management in pediatric patients. Curr Treat Options Cardiovasc Med 2006; 8: 387395.Google Scholar
179. Zhang, L, Timothy, KW, Vincent, GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 2000; 102: 28492855.Google Scholar
180. Triedman, JK. Brugada and short QT syndromes. Pacing Clin Electrophysiol 2009; 32 (Suppl 2): S58S62.Google Scholar
181. Bayes de Luna, A, Brugada, J, Baranchuk, A, et al. Current electrocardiographic criteria for diagnosis of Brugada pattern: a consensus report. J Electrocardiol 2012; 45: 433442.Google Scholar