Published online by Cambridge University Press: 09 November 2020
The objective of this study was to evaluate the feasibility and effects of education on complex congenital heart diseases using patient-specific three-dimensional printed heart models.
Three-dimensional printed heart models were created using computed tomography data obtained from 11 patients with complex congenital heart disease. Fourteen kinds of heart models, encompassing nine kinds of complex congenital heart disease were printed. Using these models, a series of educational hands-on seminars, led by an experienced paediatric cardiac surgeon and a paediatric cardiologist, were conducted for medical personnel who were involved in the care of congenital heart disease patients. Contents of the seminars included anatomy, three-dimensional structure, pathophysiology, and surgery for each diagnosis. Likert-type (10-point scale) questionnaires were used before and after each seminar to evaluate the effects of education.
Between November 2019 and June 2020, a total of 16 sessions of hands-on seminar were conducted. The total number of questionnaire responses was 75. Overall, participants reported subjective improvement in understanding anatomy (4.8 ± 2.1 versus 8.4 ± 1.1, p < 0.001), three-dimensional structure (4.6 ± 2.2 versus 8.9 ± 1.0, p < 0.001), pathophysiology (4.8 ± 2.2 versus 8.5 ± 1.0, p < 0.001), and surgery (4.9 ± 2.3 versus 8.8 ± 0.9, p < 0.001) of the congenital heart disease investigated.
The utilisation of three-dimensional printed heart models for education on complex congenital heart disease was feasible and improved medical personnel’s understanding of complex congenital heart disease. This education tool may be an effective alternative to conventional education tools for complex congenital heart disease.