Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T06:52:58.192Z Has data issue: false hasContentIssue false

Diagenesis of Oligocene-Miocene Vitric Tuffs to Montmorillonite and K-Feldspar Deposits, Durango, Mexico

Published online by Cambridge University Press:  02 April 2024

Llberto de Pablo-Galan*
Affiliation:
Institute de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F., Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Montmorillonite and K-feldspar deposits of potential economic interest occur in the Late Oligocene-Miocene tuffs of the Vizcarra Formation in the state of Durango, Mexico. The two minerals were formed separately from rhyodacitic to rhyolitic pyroclastic deposits in a closed hydrologie system and diagenetically altered following two different patterns. In material deposited on dry land the glass was completely replaced by K-feldspar, and the interstices between the replaced glass bubbles and shards were filled with chalcedony, quartz, and albite. Pyroclastic material deposited in an alkaline lacustrine environment were diagenetically altered to montmorillonite, which formed the bentonitic tuffs widely exposed beneath the K-feldspar-rich tuff. These bentonitic tuffs contain as much as 85% montmorillonite plus authigenic chalcedony and quartz. Pyrogenic sanidine, quartz, and oxybiotite, coarse glass shards, and clastic grains make up about 8% of the clay-rich tuffs. The composition of the montmorillonite corresponds to the formula (Si3.88Al0.12)(Al1.41Mg0.59)O10(OH)2(Ca0.07Mg0.11,Na0.28K0.06). The montmorillonite is dioctahedral, the surface acidity is of the Lewis type, and the clay swells to one- and two-layer complexes. The cation-exchange capacity is 64 meq/100g; base exchange is Ca2+, 15; Mg2+, 20; Na+, 4.1; and K+, 1.0 meq/100 g. Its interlamellar charge is 18.6 microcoulombs/cm2. Dacitic pyroclastics were deposited later at higher elevations along the margins of the basin. Percolating solutions apparently removed a siliceous leachate from the dacitic glass and partially altered it to clinoptilolite.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Burnham, C. W. and Yoder, H. S., 1979 The importance of volatile constituents The Evolution of the Igneous Rocks Princeton, New Jersey Princeton University Press 438482.Google Scholar
Carmichael, I. S. E. and Yoder, H. S., 1979 Glass and glassy rocks The Evolution of the Igneous Rocks Princeton, New Jersey Princeton University Press 232234.Google Scholar
Carmichael, I. S. E. Turner, F. J. and Verhoogen, J., 1974 Igneous Petrology New York McGraw-Hill.Google Scholar
Carrasco, M. (1980) Cartas y Provincias Metalogeneticas del Estado de Durango: Consejo de Recursos Minérales, Mexico, Publ. 22–E, 63 pp.Google Scholar
Cordoba, D. A., 1960 Estudio Geologico de Reconocimiento de la Region entre Rio Chico y Llano Grande, Muni-cipio de Durango, Edo. de Durango Mexico City, Mexico Thesis. Facultad de Ingenieria, Universidad Nacional A. de Mexico.Google Scholar
de Cserna-Gombos, Z., 1956 Tectonica de la Sierra Madre Oriental en Mexico entre Torreon y Monterrey XX Congreso Geologico Internacional, Mexico, Monograph .Google Scholar
de Pablo-Galan, L., Mortland, M. M. and Farmer, V. C., 1979 The clay deposits of Mexico Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 475486.Google Scholar
Direccion de Estudios del Territorio Nacional, 1978 Carta Geologica La Lagunilla G13D55, Durango Mexico Secretaria de Programacion y Presupuesto.Google Scholar
Direccion de Estudios del Territorio Nacional, 1978 Carta Geologica Cuencame G13D54, Durango Mexico Secretaria de Programacion y Presupuesto.Google Scholar
Direccion de Estudios del Territorio Nacional, 1978 Carta Geologica Rodeo Gl3D42, Durango Mexico Secretaria de Programacion y Presupuesto.Google Scholar
Direccion de Estudios del Territorio Nacional, 1978 Carta Geologica Velardena G13D44, Durango Mexico Secretaria de Programacion y Presupuesto.Google Scholar
Direccion de Estudios del Territorio Nacional, 1978 Carta Geologica Nazas G13D43, Durango Mexico Secretaria de Programacion y Presupuesto.Google Scholar
Enciso, S., 1968 Hoja Cuencame: Instituto de Geologia Mexico City, Mexico Universidad Nacional A. de Mexico.Google Scholar
Greene-Kelley, R., 1955 Dehydration of the montmorillonite minerals Mineral. Mag. 30 604615.Google Scholar
Jaynes, W. F. and Bigham, J. M., 1986 Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor Clays & Clay Minerals 34 9398.CrossRefGoogle Scholar
Lopez-Ramos, E., 1983 Carta Geologica del Estado de Durango Mexico City, Mexico Institute de Geologia, Universidad Nacional A. de Mexico.Google Scholar
Low, P. R., 1981 The swelling of clay. III. Dissociation of exchangeable cations Soil Sci. Soc. Amer. J. 45 10741078.CrossRefGoogle Scholar
Morse, S. Q., 1970 Alkali feldspars with water at 5 kb pressure J. Petrol. 11 221251.CrossRefGoogle Scholar
Morse, S. Q., 1980 Basalts and Phase Diagrams New York Springer-Verlag.CrossRefGoogle Scholar
Nakamura, Y., 1974 The system SiO2-H2O-H2 at 16 kb Carnegie Inst. Washington Yearbook 73 259262.Google Scholar
Noble, D. C., 1967 Sodium, potassium, and ferrous iron contents of some secondarily hydrated natural silicic glasses Amer. Mineral. 52 280286.Google Scholar
Noble, D. C., 1970 Loss of sodium from crystalline comendite welded tuffs in the Miocene Grouse Canyon Member of the Belted Range Tuff, Nevada Geol. Soc. Amer. Bull. 81 26772688.CrossRefGoogle Scholar
Noble, D. C., Smith, V. C. and Peck, L. C., 1967 Loss of halogens from crystallized and glassy silicic volcanic rocks Geochim. Cosmochim. Acta 31 215223.CrossRefGoogle Scholar
Occelli, M. L. and Tindwa, R. M., 1983 Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars Clays & Clay Minerals 31 2228.CrossRefGoogle Scholar
Perry, E. P., 1983 An infrared study of pyridine adsorbed on acid sites. Characterization of surface acidity J. Catal. 2 371379.CrossRefGoogle Scholar
Razo, A., 1960 Estudio Geologico de la Porcion Sur de la Sierra de la Cal y del Prospecto Minero La Preciosa, Mpio. de Nazas, Edo. de Durango Mexico City, Mexico Facultad de Ingenieria, Universidad Nacional A. de Mexico.Google Scholar
Roldan, J., 1969 Estudio Geologico de Reconocimiento de la region de Penon Blanco, Edo. de Durango Mexico City, Mexico Escuela Superior de Ingenieria y Arquitectura, Instituto Politeenico Nacional.Google Scholar
Schairer, J. F. and Bowen, N. L., 1955 The system K2O-Al2O3-SiO2 Amer. J. Sci. 253 681746.CrossRefGoogle Scholar
Schultz, L. B., 1969 Lithium and potassium adsorption, dehydroxylation temperature, and structural water content of aluminum smectites Clays & Clay Minerals 17 115149.CrossRefGoogle Scholar
Sposito, S., Prost, R. and Gaultier, P., 1983 Infrared spectroscopy study of adsorbed water on reduced-charge Na/Li montmorillonites Clays & Clay Minerals 31 916.CrossRefGoogle Scholar
Stewart, D. B. and Yoder, H. S., 1979 The formation of siliceous potassic glassy rocks The Evolution of the Igneous Rocks Princeton, New Jersey Princeton University Press 338350.Google Scholar
Svoboda, A. R., Kunze, G. W. and Bailey, S. W., 1966 Infrared study of pyridine adsorbed on montmorillonite surfaces Clays and Clay Minerals, Proc. 15thNatl. Conf., Pittsburgh, Pennsylvania, 1965 New York Pergamon Press 277288.Google Scholar
Waldbaum, D. R. and Thompson, J. B., 1969 Mixing properties of sanidine crystalline solutions. IV. Phase diagrams from equations of state Amer. Mineral. 54 12741298.Google Scholar
Ward, J. W., 1968 The ratio of adsorption coefficients of pyridine adsorbed on Lewis and Bronsted acid sites J. Catal. 11 272273.CrossRefGoogle Scholar
Weaver, C. E., 1958 The effects and geologic significance of potassium ‘fixation” by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material Amer. Mineral. 43 839861.Google Scholar
Wright, A. C., Granquist, W. T. and Kennedy, J. V., 1972 Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay J. Catal. 25 6580.CrossRefGoogle Scholar
Yund, R. A. and Ribbe, P. H., 1975 Subsolidus phase relations in the alkali feldspars with emphasis on coherent phases Feldspar Mineralogy Washington, D.C. Mineralogical Society of America, Reviews in Mineralogy, Vol. 2 Y1Y28.Google Scholar