Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:45:54.425Z Has data issue: false hasContentIssue false

Manganese Minerals in Clays: A Review

Published online by Cambridge University Press:  01 July 2024

F. V. Chukhrov
Affiliation:
Institute of Ore Geology, Petrography, Mineralogy, and Geochemistry Academy of Sciences, Moscow 17, U.S.S.R.
A. I. Gorshkov
Affiliation:
Institute of Ore Geology, Petrography, Mineralogy, and Geochemistry Academy of Sciences, Moscow 17, U.S.S.R.
E. S. Rudnitskaya
Affiliation:
Institute of Ore Geology, Petrography, Mineralogy, and Geochemistry Academy of Sciences, Moscow 17, U.S.S.R.
V. V. Beresovskaya
Affiliation:
Institute of Ore Geology, Petrography, Mineralogy, and Geochemistry Academy of Sciences, Moscow 17, U.S.S.R.
A. V. Sivtsov
Affiliation:
Institute of Ore Geology, Petrography, Mineralogy, and Geochemistry Academy of Sciences, Moscow 17, U.S.S.R.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vernadite (MnO2·nH2O) is a mineral with a poorly ordered structure. Its synthetic analogue is designated δ-MnO2. Birnessite and vernadite are independent mineral species and cannot be described further under the same name. They have similar hexagonal unit-cell parameters, a0, but different c0 parameters. Rancieite has a structure similar to that of birnessite. Calcium bearing, 14-Å birnessite occurring in nature was first described by the authors. In addition to the todorokite having the parameters a0 = 9.75 Å, b0 = 2.84 Å, and c0 = 9.59 Å, other species of natural todorokite are known having a0 parameters that are multiples of 4.88 Å equal to 14.6 and 24.40 Å, the b0 and c0 parameters being the same.

Резюме

Резюме

Вернадит (МnO2•nН2O) представляет минерал с плохо упорядоченной структурой, его синтетический аналог описывается под названием 8-МnO2. Бёрнессит и вернадит представляет различные минеральные виды и не могут описываться под одним и тем же названием. Их гексагональные элементарные ячейки характеризуются одинаковым параметром а0 при разных значениях параметра с0. Рансьеит структурно подобен бёрнесситу. Впервые авторами описан природный 14 Å кальцийсодержащий бёрнессит. Помимо обычного тодорокита (а0 = 9,75, b0 = 2,84, с0 = 9,59 Å) в природе установлены другие тодорокиты с параметром а0, кратным 4,88 Å (14,6 и 24,40 Å). Пар аметры b0 и c0 у всех тодорокитов одинаковы.

Resümee

Resümee

Vernadit (MnO2·nH2O) ist ein Mineral mit einer schlecht geordneten Struktur. Sein synthetisches Analogon wird δ-MnO2 genannt. Birnessit und Vernadit sind zwei verschiedene Minerale und können nicht länger mit demselben Namen bezeichnet werden. Sie haben ähnlich hexagonale Parameter der Elementarzelle, a0, aber verschiedene c0-Parameter. Rancieit hat eine dem Birnessit ähnliche Struktur. Das natürliche Vorkommen Calcium-führenden 14-Å Birnessits wurde zum ersten Mal von den Autoren beschrieben. Außer dem Todprokit mit den Parametern a0 = 9,75 Å, b0 = 2,84 Å, und c0 = 9,59 Å sind andere Arten von natürlichem Todorokit bekannt. Sie haben a0-Parameter die ein Vielfaches von 4,88 Å sind, wie 14,6 und 24,40 Å. Die b0- und c0-Parameter sind dieselben. [U.W.]

Résumé

Résumé

La vernadite (MnO2·nH2O) est un minéral ayant une structure pauvrement ordonnée. Son analogue synthétique est designé δ-MnO2. La birnessite et la vernadite sont des espèces minérales indépendantes et ne peuvent plus être décrites par la même appellation. Elles ont des paramètres de maille hexagonale pareils, a0, mais des paramètres c0 différents. La rancéite a une structure semblable à celle de la birnessite. La birnessite 14 Å contenant du calcium, trouvée dans la nature, a été decrite pour la première fois par les auteurs. En plus de la todorokite ayant les paramètres a0 = 9,75 Å, b0 = 2,84 Å, et c0 = 9,59 Å, on sait que d'autres espèces de todorokite ont des paramètres a0 qui sont des multiples de 4,88 Å égal à 14,6 et 24,40 Å, les paramètres b0 et c0 étant les mêmes. [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Bardossy, G. and Brindley, G., (1978) Rancieite associated with karstic bauxite deposit Amer. Mineral. 63 762767.Google Scholar
Betekhtin, A. G. (1940) South-Urals manganese deposits as a raw material base for the Magnitogorsk métallurgie plant: Trudilnst. Geol. Seien. Acad. Sci. USSR, Ore Deposit Ser. N 4.Google Scholar
Bricker, O., (1965) Some stability relations in the system Mn-O-HO at 25° and one atmosphere total pressure Amer. Mineral. 50 12961354.Google Scholar
Brown, F. H. Pabst, A. and Sawyer, D. L., (1971) Birnessite on colemanite at Boron, California Amer. Mineral. 56 10571064.Google Scholar
Burns, R. S. Burns, V. M. and Glasby, G. P., (1977) Mineralogy Marine Manganese Deposits Amsterdam Elsevier 185248.CrossRefGoogle Scholar
Buser, W. Graf, P. and Feitknecht, W., (1955) Beitrag zur Kenntnis der Mangan(II)-manganit und des δ-MnO2 Helv. Chim. Acta 37 23222333.CrossRefGoogle Scholar
Chukhrov, F. V. Gorshkov, A. I. Rudnitskaya, E. S. Berezovskaya, V. V. and Sivtsov, A. V., (1978) On vernadite Izv. Akad. Nauk SSSR, Ser. Geol. 6 519.Google Scholar
Chukhrov, F. V. Gorshkov, A. I. Rudnitskaya, E. S. and Sivtsov, AV, (1978) Characteristic account of birnessite Izv. Akad. Nauk SSSR, Ser. Geol. 1 8694.Google Scholar
Chukhrov, F. V. Gorshkov, A. I. Sivtsov, A. V. and Berezovskaya, V. V., (1978) Structural species of todorokite Izv. Akad. Nauk SSSR, Ser. Geol. 19 8694.Google Scholar
Chukhrov, F. V. Gorshkov, A. I. Sivtsov, A. V. and Berezovskaya, V. V., (1979) New mineral phases of deep-sea manganese micro-concretions Izv. Akad. Nauk SSSR, Ser. Geol. 1 8390.Google Scholar
Finkleman, R. B. Evans, H. T. and Matzko, J. J., (1974) Manganese minerals in geodes from Chihuahua, Mexico Mineral. Mag. 39 549558.CrossRefGoogle Scholar
Fleisher, M. and Richmond, W. E., (1943) The manganese oxide minerals: A preliminary report Econ. Geol. 28 269286.CrossRefGoogle Scholar
Frondel, O. Mervin, O. B. and Ito, J., (1960) New data on birnessite and hollandite Amer. Mineral. 45 871875.Google Scholar
Giovanoli, R. Burke, P. Giuffredi, M. and Stumm, W., (1975) Layer structured manganese oxide-hydroxides. IV: The buserite group structure stabilization by transition elements Chimia 29 517520.Google Scholar
Giovanoli, R. Stähli, E. and Feitknecht, W., (1970) Über Oxydhydroxide des vierwertigen Mangans mit Schichtengitter. 2. Mangan-Manganat(IV) Helv. Chim. Acta 53 453464.CrossRefGoogle Scholar
Glasby, G. P., (1972) The mineralogy of manganese nodules from a range of marine environments Mar. Geol. 13 5772.CrossRefGoogle Scholar
Glover, E. D., (1977) Characterization of marine birnessite Amer. Mineral. 62 278285.Google Scholar
Jones, L. H. P. and Milne, A., (1956) Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland Mineral. Mag. 31 283288.Google Scholar
Koljonen, T. Lahermo, P. and Garlson, L., (1976) Origin, mineralogy and geochemistry of manganese rocks and ferruginous precipitates found in sand gravel deposits in Finland Bull. Geol. Soc. Finland 48 111135.CrossRefGoogle Scholar
Levinson, A. A., (1962) Birnessite from Mexico Amer. Mineral. 47 790791.Google Scholar
Nambu, M. and Tanida, K., (1971) New mineral—takanelite J. Japan. Ass. Mineral., Penologists, Econ. Geol. 65 115.Google Scholar
Perseil, E. A., (1967) Nouvelle données sur la ranciéite au Rancié C. R. Acad. Sci. Paris 284 12411248.Google Scholar
Richmond, W. E. Fleischer, M. and Mrose, M., (1969) Studies on manganese oxide minerals. IX. Rancieite Bull. Soc. Fr. Mineral. Cristallog. 92 191195.Google Scholar
Sorem, K. K. and Gunn, D. W., (1971) Mineralogy of manganese deposits, Olympic Peninsula, Washington Econ. Geol. 62 2281.CrossRefGoogle Scholar
Straczek, J. A. Horen, A. Ross, M. and Warshaw, C. M., (1960) Studies on manganese mineral oxides. IV. Todorokite Amer. Mineral. 45 11741184.Google Scholar