The present study deals with accurate identification of polytypes, twins, and allotwins – oriented crystal associations of more than one polytype. The trioctahedral 1:1 layered silicate cronstedtite was studied using single-crystal X-ray diffraction data collected with a four-circle diffractometer equipped with a CCD detector. The sample from the skarn occurrence, Ouedi Beht, El Hammam, Morocco, was explored. It contains cronstedtite in fibrous massive aggregates in the central part, and euhedral crystals in surrounding veinlets and druses. The reciprocal space (RS) sections created by the diffractometer software and presented here were used to determine the OD (ordered-disordered) subfamilies (Bailey’s group A, B, C, D) and to identify polytypes. The chemical compositions of some crystals were determined thereafter by electron probe microanalysis (EPMA-WDS). Some crystals studied are more or less complicated allotwins. Polytypes were thus separated by cleaving crystals into smaller parts in many cases. All polytypes found belong to subfamilies A or D. The following polytypes of the subfamily A were identified: 2M1 (a = 5.49, b = 9.51, c = 14.40 Å, β = 97.30°, space group Cc), 1M (a = 5.51, b = 9.54, c = 7.33 Å, β = 104.5°, Cm), 3T (a = 5.51, c = 21.32 Å, P31), 6T2 (a = 5.50, c = 42.60 Å, P31). 2M1 and 3T were present as isolated crystals or separated by cleaving, otherwise all these polytypes are parts of allotwins. The 2M1 polytype is sometimes twinned by reticular pseudo merohedry with twin index n = 3 and 120° rotation about the chex axis as the twin operation. Allotwins of 1M + twinned 2M1 polytypes are also present. Another kind of twinning, with rotation by (2n+1)×60° about chex is rare. The subfamily D is represented mostly by 2H1 and 2H2 polytypes, a = 5.50, c = 14.25 Å, space groups P63cm (2H1), P63 (2H2). In addition, several six-layer (a = 5.49, c = 42.80 Å), mostly non-MDO polytypes were separated from allotwins by cleaving. In order to identify them, 24 possible stacking sequences were modeled, diffraction patterns calculated, graphical identification diagrams constructed, and comparisons made with actual RS sections. This simulation revealed that five pairs of sequences provided identical diffraction patterns. Polytypes actually found correspond to the following sequences: 1 (6T1), 5 (proposed Ramsdell’s symbol 6T3), 8+10 (6T5), 11+12 (6T4), 24 (6T6, trigonal polytypes, space group type P3), 22 (6R1), and 23 (6R2, rhombohedral polytypes, space group type R3c and R3, respectively). The RS section corresponding to the hexagonal polytype 6H2 (sequence 14) was also found. However, diffraction patterns geometrically indistinguishable can be produced by the twin with rotation by 180° about chex as a twin operation of the rhombohedral polytype 6R2 (sequence 23). Several aggregates with fiber texture of polytype 2H2 were separated from the central part. Use of EPMA-WDS revealed Fe and Si along with significant amounts of Mn and Mg. Crystals from veins were more Mn- and Mg-rich than these from the central part. Traces of Cl, S, and Al are present also.