Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T07:11:31.211Z Has data issue: false hasContentIssue false

Shape Measures of Random Increasing k-trees

Published online by Cambridge University Press:  04 May 2016

ALEXIS DARRASSE
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 06, LIP6, F-75005, Paris, France (e-mail: darrasse@gmail.com, michele.soria@lip6.fr)
HSIEN-KUEI HWANG
Affiliation:
Institute of Statistical Science, Academia Sinica, Taipei 115Taiwan (e-mail: hkhwang@stat.sinica.edu.tw)
MICHÈLE SORIA
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 06, LIP6, F-75005, Paris, France (e-mail: darrasse@gmail.com, michele.soria@lip6.fr)

Abstract

Random increasing k-trees represent an interesting and useful class of strongly dependent graphs that have been studied widely, including being used recently as models for complex networks. In this paper we study an informative notion called BFS-profile and derive, by several analytic means, asymptotic estimates for its expected value, together with the limiting distribution in certain cases; some interesting consequences predicting more precisely the shapes of random k-trees are also given. Our methods of proof rely essentially on a bijection between k-trees and ordinary trees, the resolution of linear systems, and a specially framed notion called Flajolet–Odlyzko admissibility.

Type
Paper
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

A complete version containing an appendix on zero distribution of the indicial polynomial and another on random generation of random k-trees can be found on the second author's webpage. This version will be referred to as DHS throughout this paper.

References

[1] Andrade, J. S. Jr, Herrmann, H. J., Andrade, R. F. S. and da Silva, L. R. (2005) Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Phys. Rev. Lett. 94 018702.Google Scholar
[2] Arnborg, S., Corneil, D. G. and Proskurowski, A. (1987) Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8 277284.Google Scholar
[3] Arya, S., Golin, M. J. and Mehlhorn, K. (1999) On the expected depth of random circuits. Combin. Probab. Comput. 8 209228.CrossRefGoogle Scholar
[4] Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286 (5439) 509512.Google Scholar
[5] Beineke, L. W. and Pippert, R. E. (1969) The number of labeled k-dimensional trees. J. Combin. Theory 6 200205.Google Scholar
[6] Bergeron, F., Flajolet, P. and Salvy, B. (1992) Varieties of increasing trees. In CAAP '92, Vol. 581 of Lecture Notes in Computer Science, Springer, pp. 2448.Google Scholar
[7] Berztiss, A. T. (1980) Depth-first k-trees and critical path analysis. Acta Inform. 13 325346.CrossRefGoogle Scholar
[8] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.-U. (2006) Complex networks: Structure and dynamics. Phys. Rep. 424 175308.Google Scholar
[9] Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001) The degree sequence of a scale-free random graph process. Random Struct. Alg. 18 279290.Google Scholar
[10] Chauvin, B., Klein, T., Marckert, J.-F. and Rouault, A. (2005) Martingales and profile of binary search trees. Electron. J. Probab. 10 420435.CrossRefGoogle Scholar
[11] Chern, H.-H. and Hwang, H.-K. (2001) Phase changes in random m-ary search trees and generalized quicksort. Random Struct. Alg. 19 316358.Google Scholar
[12] Chern, H.-H. and Hwang, H.-K. (2001) Transitional behaviors of the average cost of Quicksort with median-of-(2t+1). Algorithmica 29 4469.Google Scholar
[13] Chern, H.-H., Hwang, H.-K. and Tsai, T.-H. (2002) An asymptotic theory for Cauchy–Euler differential equations with applications to the analysis of algorithms. J. Algorithms 44 177225.Google Scholar
[14] Darrasse, A., Hwang, H.-K., Bodini, O. and Soria, M. (2010) The connectivity-profile of random increasing k-trees. In Proc. Seventh Workshop on Analytic Algorithmics and Combinatorics: ANALCO, SIAM, pp. 99106.Google Scholar
[15] Darrasse, A. and Soria, M. (2009) Limiting distribution for distances in k-trees. In IWOCA 2009, Vol. 5874 of Lecture Notes in Computer Science, Springer, pp. 170182.Google Scholar
[16] Darrasse, A. and Soria, M. (2012) A unifying structural approach to the analysis of parameters in k-trees. Submitted.Google Scholar
[17] Devroye, L. and Janson, S. (2011) Long and short paths in uniform random recursive dags. Arkiv för Matematik 49 6177.Google Scholar
[18] Drmota, M. (2009) Random Trees, Springer.Google Scholar
[19] Drmota, M. and Gittenberger, B. (1997) On the profile of random trees. Random Struct. Alg. 10 421451.Google Scholar
[20] Drmota, M. and Hwang, H.-K. (2005) Bimodality and phase transitions in the profile variance of random binary search trees. SIAM J. Discrete Math. 19 1945.Google Scholar
[21] Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of search trees. Ann. Appl. Probab. 18 288333.Google Scholar
[22] Durrett, R. (2006) Random Graph Dynamics, Cambridge University Press.Google Scholar
[23] Fisher, M. L. (1994) Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 42 626642.Google Scholar
[24] Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 216240.Google Scholar
[25] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.CrossRefGoogle Scholar
[26] Frieze, A. M. and Tsourakakis, C. E. (2012) On certain properties of random Apollonian networks. In WAW (Bonato, A. and Janssen, J. C. M., eds), Vol. 7323 of Lecture Notes in Computer Science, Springer, pp. 93112.Google Scholar
[27] Fuchs, M., Hwang, H.-K. and Neininger, R. (2006) Profiles of random trees: Limit theorems for random recursive trees and binary search trees. Algorithmica 46 367407.Google Scholar
[28] Gao, Y. (2009) The degree distribution of random k-trees. Theoret. Comput. Sci. 410 688695.Google Scholar
[29] Greene, D. H. (1983) Labelled formal languages and their uses. PhD thesis, Stanford University.Google Scholar
[30] Hennequin, P. (1991) Analyse en moyenne d'algorithme, tri rapide et arbres de recherche. Thesis, LIX, École Polytechnique.Google Scholar
[31] Hwang, H.-K. (1995) Asymptotic expansions for the Stirling numbers of the first kind. J. Combin. Theory Ser. A 71 343351.Google Scholar
[32] Hwang, H.-K. (2007) Profiles of random trees: Plane-oriented recursive trees. Random Struct. Alg. 30 380413.CrossRefGoogle Scholar
[33] Labelle, G., Lamathe, C. and Leroux, P. (2004) Labelled and unlabelled enumeration of k-gonal 2-trees. J. Combin. Theory Ser. A 106 193219.CrossRefGoogle Scholar
[34] Lin, G. (2005) An improved approximation algorithm for multicast k-tree routing. J. Combin. Optim. 9 349356.Google Scholar
[35] Mahmoud, H. M., Smythe, R. T. and Szymański, J. (1993) On the structure of random plane-oriented recursive trees and their branches. Random Struct. Alg. 4 151176.Google Scholar
[36] Marckert, J.-F. and Albenque, M. (2008) Some families of increasing planar maps. Electron. J. Probab. 13 16241671.Google Scholar
[37] Martinhon, C., Lucena, A. and Maculan, N. (2004) Stronger K-tree relaxations for the vehicle routing problem. European J. Oper. Res. 158 5671.Google Scholar
[38] Meir, A. and Moon, J. W. (1978) On the altitude of nodes in random trees. Canad. J. Math. 30 9971015.Google Scholar
[39] Morcrette, B. (2010) Combinatoire analytique et modèles d'urnes. Report, Master Parisien de Recherche en Informatique.Google Scholar
[40] Newelski, L. and Rosłanowski, A. (1993) The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc. 117 823831.Google Scholar
[41] Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev. 45 167256.Google Scholar
[42] Palmer, E. M. and Read, R. C. (1973) On the number of plane 2-trees. J. London Math. Soc. (2) 6 583592.Google Scholar
[43] Panholzer, A. and Seitz, G. (2010) Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model. In AofA'10 (Drmota, M. and Gittenberger, B., eds), DMTCS, pp. 549564.Google Scholar
[44] Park, G., Hwang, H.-K., Nicodème, P. and Szpankowski, W. (2009) Profiles of tries. SIAM J. Comput. 38 18211880.Google Scholar
[45] Pávó, I. (1971) Generation of the k-trees of a graph. Acta Cybernet. 1 5768.Google Scholar
[46] Prodinger, H. and Urbanek, F. J. (1983) On monotone functions of tree structures. Discrete Appl. Math. 5 223239.Google Scholar
[47] Proskurowski, A. (1980) K-trees: representations and distances. Congr. Numer. 29 785794.Google Scholar
[48] Rényi, A. (1970) On the number of endpoints of a k-tree. Studia Sci. Math. Hungar. 5 510.Google Scholar
[49] Rose, D. J. (1974) On simple characterizations of k-trees. Discrete Math. 7 317322.Google Scholar
[50] Stevens, W. R. (1994) Traceroute program. Chapter 8 in TCP/IP Illustrated, Vol. 1: The Protocols, Addison-Wesley Professional.Google Scholar
[51] Szymański, J. (1987) On a nonuniform random recursive tree. In Random Graphs '85: Poznań, 1985, Vol. 144 of North-Holland Mathematics Studies, North-Holland, pp. 297306.Google Scholar
[52] Viger, F., Augustin, B., Cuvellier, X., Magnien, C., Latapy, M., Friedman, T. and Teixeira, R. (2008) Detection, understanding, and prevention of traceroute measurement artifacts. Comput. Networks 52 9981018.Google Scholar
[53] Win, S. (1989) On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5 201205.Google Scholar
[54] Zhang, Z., Chen, L., Zhou, S., Fang, L., Guan, J. and Zou, T. (2008) Analytical solution of average path length for Apollonian networks. Phys. Rev. E 77 017102.Google Scholar
[55] Zhang, Z., Rong, L. and Comellas, F. (2006) High-dimensional random Apollonian networks. Phys. A 364 610618.Google Scholar