Published online by Cambridge University Press: 11 July 2019
Let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}(\Bbbk )$, where $\Bbbk$ is an algebraically closed field of characteristic $p>0$, and $N\in \mathbb{Z}_{{\geqslant}1}$. Let $\unicode[STIX]{x1D712}\in \mathfrak{g}^{\ast }$ and denote by $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ the corresponding reduced enveloping algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite-dimensional $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-module has dimension divisible by $p^{d_{\unicode[STIX]{x1D712}}}$, where $d_{\unicode[STIX]{x1D712}}$ is half the dimension of the coadjoint orbit of $\unicode[STIX]{x1D712}$. Our main theorem gives a classification of $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-modules of dimension $p^{d_{\unicode[STIX]{x1D712}}}$. As a consequence, we deduce that they are all parabolically induced from a one-dimensional module for $U_{0}(\mathfrak{h})$ for a certain Levi subalgebra $\mathfrak{h}$ of $\mathfrak{g}$; we view this as a modular analogue of Mœglin’s theorem on completely primitive ideals in $U(\mathfrak{g}\mathfrak{l}_{N}(\mathbb{C}))$. To obtain these results, we reduce to the case where $\unicode[STIX]{x1D712}$ is nilpotent, and then classify the one-dimensional modules for the corresponding restricted $W$-algebra.