Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:47:11.848Z Has data issue: false hasContentIssue false

Sheaves of categories with local actions of Hochschild cochains

Published online by Cambridge University Press:  04 July 2019

Dario Beraldo*
Affiliation:
Institut de mathématiques de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31400 Toulouse, France email darioberaldo@gmail.com

Abstract

The notion of Hochschild cochains induces an assignment from $\mathsf{Aff}$, affine DG schemes, to monoidal DG categories. We show that this assignment extends, under appropriate finiteness conditions, to a functor $\mathbb{H}:\mathsf{Aff}\rightarrow \mathsf{Alg}^{\text{bimod}}(\mathsf{DGCat})$, where the latter denotes the category of monoidal DG categories and bimodules. Any functor $\mathbb{A}:\mathsf{Aff}\rightarrow \mathsf{Alg}^{\text{bimod}}(\mathsf{DGCat})$ gives rise, by taking modules, to a theory of sheaves of categories $\mathsf{ShvCat}^{\mathbb{A}}$. In this paper, we study $\mathsf{ShvCat}^{\mathbb{H}}$. Loosely speaking, this theory categorifies the theory of $\mathfrak{D}$-modules, in the same way as Gaitsgory’s original $\mathsf{ShvCat}$ categorifies the theory of quasi-coherent sheaves. We develop the functoriality of $\mathsf{ShvCat}^{\mathbb{H}}$, its descent properties and the notion of $\mathbb{H}$-affineness. We then prove the $\mathbb{H}$-affineness of algebraic stacks: for ${\mathcal{Y}}$ a stack satisfying some mild conditions, the $\infty$-category $\mathsf{ShvCat}^{\mathbb{H}}({\mathcal{Y}})$ is equivalent to the $\infty$-category of modules for $\mathbb{H}({\mathcal{Y}})$, the monoidal DG category of higher differential operators. The main consequence, for ${\mathcal{Y}}$ quasi-smooth, is the following: if ${\mathcal{C}}$ is a DG category acted on by $\mathbb{H}({\mathcal{Y}})$, then ${\mathcal{C}}$ admits a theory of singular support in $\operatorname{Sing}({\mathcal{Y}})$, where $\operatorname{Sing}({\mathcal{Y}})$ is the space of singularities of ${\mathcal{Y}}$. As an application to the geometric Langlands programme, we indicate how derived Satake yields an action of $\mathbb{H}(\operatorname{LS}_{{\check{G}}})$ on $\mathfrak{D}(\operatorname{Bun}_{G})$, thereby equipping objects of $\mathfrak{D}(\operatorname{Bun}_{G})$ with singular support in $\operatorname{Sing}(\operatorname{LS}_{{\check{G}}})$.

Type
Research Article
Copyright
© The Author 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by EPSRC programme grant EP/M024830/1 Symmetries and Correspondences, and by grant ERC-2016-ADG-74150.

References

Arinkin, D. and Gaitsgory, D., Singular support of coherent sheaves and the geometric Langlands conjecture , Selecta Math. (N.S.) 21 (2015), 1199.Google Scholar
Arinkin, D. and Gaitsgory, D., The category of singularities as a crystal and global Springer fibers , J. Amer. Math. Soc. 31 (2018), 135214.Google Scholar
Benson, D., Iyengar, S. B. and Krause, H., Local cohomology and support for triangulated categories , Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 573619.Google Scholar
Ben-Zvi, D., Francis, J. and Nadler, D., Integral transforms and Drinfeld centers in derived algebraic geometry , J. Amer. Math. Soc. 23 (2010), 909966.Google Scholar
Beraldo, D., Loop group actions on categories and Whittaker invariants , Adv. Math. 322 (2017), 565636.Google Scholar
Beraldo, D., The center of  $\mathbb{H}({\mathcal{Y}})$ , Preprint (2017), arXiv:1709.07867.Google Scholar
Beraldo, D., The spectral gluing theorem revisited, Preprint (2018), arXiv:1804.04861.Google Scholar
Beraldo, D., On the extended Whittaker category , Selecta Math. (N.S.) 25 (2019), 28.Google Scholar
Beraldo, D., The topological chiral homology of the spherical category , J. Topol. 12 (2019), 684703.Google Scholar
Gaitsgory, D., Ind-coherent sheaves , Mosc. Math. J. 553 (2013), 399528.Google Scholar
Gaitsgory, D., Outline of the proof of the geometric Langlands conjecture for GL 2 , Asterisque 370 (2015), 1112.Google Scholar
Gaitsgory, D., Sheaves of categories and the notion of 1-affineness, Contemporary Mathematics, vol. 643 (American Mathematical Society, Providence, RI, 2015).Google Scholar
Gaitsgory, D. and Rozenblyum, N., A study in derived algebraic geometry, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, Providence, RI, 2017).Google Scholar
Haugseng, R., The higher Morita category of En-algebras , Geom. Topol. 21 (2017), 16311730.Google Scholar
Lurie, J., Higher algebra (version: September 2017), available at http://www.math.harvard.edu/∼lurie.Google Scholar
Lurie, J., Spectral algebraic geometry (version: February 2018),  available at http://www.math.harvard.edu/∼lurie.Google Scholar
Rozenblyum, N., Connections on conformal blocks. PhD thesis, MIT (2011).Google Scholar