Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:53:48.490Z Has data issue: false hasContentIssue false

SHARP BOUNDS ON THE DISTRIBUTION OF TREATMENT EFFECTS AND THEIR STATISTICAL INFERENCE

Published online by Cambridge University Press:  07 October 2009

Abstract

In this paper, we propose nonparametric estimators of sharp bounds on the distribution of treatment effects of a binary treatment and establish their asymptotic distributions. We note the possible failure of the standard bootstrap with the same sample size and apply the fewer-than-n bootstrap to making inferences on these bounds. The finite sample performances of the confidence intervals for the bounds based on normal critical values, the standard bootstrap, and the fewer-than-n bootstrap are investigated via a simulation study. Finally we establish sharp bounds on the treatment effect distribution when covariates are available.

Type
Brief Report
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Jinyong Hahn and two anonymous referees for their valuable suggestions that greatly improved the paper. We thank Jianqing Fan, Joel Horowitz, Chuck Manski, Per Mykland, Bryan Shepherd, Elie Tamer, and seminar participants in the Department of Statistics at the University of Chicago and in the Department of Economics at Northwestern University, UNC at Chapel Hill, and Princeton University for helpful discussions. We also thank Jeff Smith and Jörg Stoye for providing useful references. Y. Fan acknowledges financial support from the National Science Foundation.

References

REFERENCES

Aakvik, A., Heckman, J., & Vytlacil, E. (2005) Estimating treatment effects for discrete outcomes when responses to treatment vary among observationally identical persons: An application to Norwegian vocational rehabilitation programs. Journal of Econometrics 125, 1551.10.1016/j.jeconom.2004.04.002CrossRefGoogle Scholar
Abadie, A., Angrist, J., & Imbens, G. (2002) Instrumental variables estimation of quantile treatment effects. Econometrica 70, 91117.10.1111/1468-0262.00270CrossRefGoogle Scholar
Abbring, J.H. & Heckman, J. (2007) Econometric evaluation of social programs, Part III: Distributional treatment effects, dynamic treatment effects, dynamic discrete choice, and general equilibrium policy evaluation. In Handbook of Econometrics 6B, 51455301. North-Holland.10.1016/S1573-4412(07)06072-2CrossRefGoogle Scholar
Andrews, D.W.K. (2000) Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica 68, 399405.10.1111/1468-0262.00114CrossRefGoogle Scholar
Andrews, D.W.K. & Guggenberger, P. (2009) Hybrid and size-corrected subsampling methods. Econometrica 77, forthcoming.Google Scholar
Andrews, D.W.K. & Guggenberger, P. (2010) Asymptotic size and a problem with subsampling and with the m out of n Bootstrap. Econometric Theory 26, forthcoming.10.1017/S0266466609100051CrossRefGoogle Scholar
Beran, R. (1997) Diagnosing bootstrap success. Annals of the Institute of Statistical Mathematics 49, 124.10.1023/A:1003114420352CrossRefGoogle Scholar
Bickel, P.J., Götze, F., & Zwet, W.R. (1997) Resampling fewer than n observations: Gains, losses, and remedies for losses. Statistica Sinica 7, 131.Google Scholar
Bickel, P.J. & Sakov, A. (2008) On the choice of m in the m out of n bootstrap and its application to confidence bounds for extreme percentiles. Statistica Sinica 18, 967985.Google Scholar
Biddle, J., Boden, L., & Reville, R. (2003) A Method for Estimating the Full Distribution of a Treatment Effect, With Application to the Impact of Workfare Injury on Subsequent Earnings. Manuscript, Michiga State University.Google Scholar
Bitler, M., Gelbach, J., & Hoynes, H.W. (2006) What mean impacts miss: Distributional effects of welfare reform experiments. American Economic Review 96, 9881012.10.1257/aer.96.4.988CrossRefGoogle Scholar
Black, D.A., Smith, J.A., Berger, M.C., & Noel, B.J. (2003) Is the threat of reemployment services more effective than the services themselves? Experimental evidence from the UI system. American Economic Review 93(3), 13131327.10.1257/000282803769206313CrossRefGoogle Scholar
Blundell, R., Gosling, A., Ichimura, H., & Meghir, C. (2007) Changes in the distribution of male and female wages accounting for employment composition using bounds. Econometrica 75, 323363.10.1111/j.1468-0262.2006.00750.xCrossRefGoogle Scholar
Cambanis, S., Simons, G., & Stout, W. (1976) Inequalities for εk (X, Y) when the marginals are fixed. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 36, 285294.10.1007/BF00532695CrossRefGoogle Scholar
Carneiro, P., Hansen, K.T., & Heckman, J. (2003) Estimating distributions of treatment effects with an application to the returns to schooling and measurement of the effects of uncertainty on college choice. International Economic Review 44(2), 361422.10.1111/1468-2354.t01-1-00074CrossRefGoogle Scholar
Chernozhukov, V. & Hansen, C. (2005) An IV model of quantile treatment effects. Econometrica 73, 245261.10.1111/j.1468-0262.2005.00570.xCrossRefGoogle Scholar
Chernozhukov, V., Hong, H., & Tamer, E. (2007) Parameter set inference in a class of econometric models. Econometrica 75, 12431284.10.1111/j.1468-0262.2007.00794.xCrossRefGoogle Scholar
Davidson, R. & Mackinnon, J.G. (2004) Econometric Theory and Method. Oxford University Press.Google Scholar
Dehejia, R. (1997) A Decision-Theoretic Approach to Program Evaluation. Ph.D. dissertation, Harvard University.Google Scholar
Dehejia, R. & Wahba, S. (1999) Causal effects in non-experimental studies: Re-evaluating the evaluation of training programs. Journal of the American Statistical Association 94, 10531062.10.1080/01621459.1999.10473858CrossRefGoogle Scholar
Denuit, M., Genest, C., & Marceau, E. (1999) Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics 25, 85104.Google Scholar
Djebbari, H. & Smith, J.A. (2008) Heterogeneous impacts in PROGRESA. Journal of Econometrics 145, 6480.10.1016/j.jeconom.2008.05.012CrossRefGoogle Scholar
Doksum, K. (1974) Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Annals of Statistics 2, 267277.10.1214/aos/1176342662CrossRefGoogle Scholar
Embrechts, P., Hoeing, A., & Juri, A. (2003) Using copulae to bound the value-at-risk for functions of dependent risks. Finance & Stochastics 7(2), 145167.10.1007/s007800200085CrossRefGoogle Scholar
Firpo, S. (2007) Efficient semiparametric estimation of quantile treatment effects. Econometrica 75, 259276.10.1111/j.1468-0262.2007.00738.xCrossRefGoogle Scholar
Firpo, S. & Ridder, G. (2008) Bounds on Functionals of the Distribution of Treatment Effects. Working paper, Sâo Paulo School of Economics, Fundacâo. Getulio Vargas (FGV).10.2139/ssrn.1284116CrossRefGoogle Scholar
Frank, M.J., Nelsen, R.B., & Schweizer, B. (1987) Best-possible bounds on the distribution of a sum—a problem of kolmogorov. Probability Theory and Related Fields 74, 199211.10.1007/BF00569989CrossRefGoogle Scholar
Hahn, J. (1998) On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66, 315331.10.2307/2998560CrossRefGoogle Scholar
Heckman, J., Ichimura, H., Smith, J., & Todd, P. (1998) Characterizing Selection Bias Using Experimental Data. Econometrica 66, 10171098.10.2307/2999630CrossRefGoogle Scholar
Heckman, J. & Robb, R. (1985) Alternative methods for evaluating the impact of interventions. In Heckman, J. & Singer, B. (eds.), Longitudinal Analysis of Labor Market Data. Cambridge University Press.10.1017/CCOL0521304539CrossRefGoogle Scholar
Heckman, J. & Smith, J. (1993) Assessing the case for randomized evaluation of social programs. In Jensen, K. & Madsen, P.K. (eds), Measuring Labour Market Measures: Evaluating the Effects of Active Labour Market Policies, pp. 3596. Danish Ministry of Labor.Google Scholar
Heckman, J., Smith, J., & Clements, N. (1997) Making the most out of programme evaluations and social experiments: Accounting for heterogeneity in programme impacts. Review of Economic Studies 64, 487535.10.2307/2971729CrossRefGoogle Scholar
Hirano, K., Imbens, G.W., & Ridder, G. (2003) Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71, 11611189.10.1111/1468-0262.00442CrossRefGoogle Scholar
Honore, B.E. & Lleras-Muney, A. (2006) Bounds in competing risks models and the war on cancer. Econometrica 74, 16751698.10.1111/j.1468-0262.2006.00722.xCrossRefGoogle Scholar
Horowitz, J.L. & Manski, C.F. (2000) Nonparametric analysis of randomized experiments with missing covariate and outcome data. Journal of the American Statistical Association 95, 7784.10.1080/01621459.2000.10473902CrossRefGoogle Scholar
Imbens, G.W. & Manski, C.F. (2004) Confidence intervals for partially identified parameters. Econometrica 72, 18451857.10.1111/j.1468-0262.2004.00555.xCrossRefGoogle Scholar
Imbens, G.W. & Newey, W. (2005) Identification and Estimation of Triangular Simultaneous Equations Models without Additivity. Working paper, Department of Economics, University of California, Berkeley.Google Scholar
Imbens, G.W. & Rubin, D.B. (1997) Estimating outcome distributions for compliers in instrumental variables models. Review of Economic Studies 64, 555574.10.2307/2971731CrossRefGoogle Scholar
Joe, H. (1997) Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, London.Google Scholar
Lalonde, R. (1995) The promise of public-sector sponsored training programs. Journal of Economic Perspectives 9, 149168.10.1257/jep.9.2.149CrossRefGoogle Scholar
Lechner, M. (1999) Earnings and employment effects of continuous off-the-job training in East germany after unification. Journal of Business and Economic Statistics 17, 7490.Google Scholar
Lee, L.F. (2002) Correlation Bounds for Sample Selection Models with Mixed Continuous, Discrete and Count Data Variables. Manuscript, Ohio State University.Google Scholar
Lee, M.J. (2005) Micro-Econometrics for Policy, Program, and Treatment Effects. Oxford University Press.10.1093/0199267693.001.0001CrossRefGoogle Scholar
Lehmann, E.L. (1974) Nonparametrics: Statistical Methods Based on Ranks. Holden-Day Inc.Google Scholar
Makarov, G.D. (1981) Estimates for the distribution function of a sum of two random variables when the marginal distributions are fixed. Theory of Probability and its Applications 26, 803806.10.1137/1126086CrossRefGoogle Scholar
Manski, C.F. (1990) Non-parametric bounds on treatment effects. American Economic Review, Papers and Proceedings 80, 319323.Google Scholar
Manski, C.F. (1994) The selection problem. In Sims, C. (ed.), Advances in Econometrics, Sixth World Congress, vol. 1. Cambridge University Press.Google Scholar
Manski, C.F. (1997a) Monotone treatment effect. Econometrica 65, 13111334.10.2307/2171738CrossRefGoogle Scholar
Manski, C.F. (1997b) The mixing problem in programme evaluation. Review of Economic Studies 64, 537553.10.2307/2971730CrossRefGoogle Scholar
Manski, C.F. (2003) Partial Identification of Probability Distributions. Springer-Verlag.Google Scholar
Manski, C.F. & Pepper, J. (2000) Monotone instrumental variables: With application to the returns to schooling. Econometrica 68, 9971010.10.1111/1468-0262.00144CrossRefGoogle Scholar
McNeil, A., Frey, R., & Embrechts, P. (2005) Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton Series in Finance. Springer.Google Scholar
Nelsen, R.B. (1999) An Introduction to Copulas. Springer.10.1007/978-1-4757-3076-0CrossRefGoogle Scholar
Politis, D.N., Romano, J.P., & Wolf, M. (1999) Subsampling. Springer-Verlag.10.1007/978-1-4612-1554-7CrossRefGoogle Scholar
Romano, J. & Shaikh, A.M. (2008) Inference for identifiable parameters in partially identified econometric models. Journal of Statistical Planning and Inference 138, 27862807.10.1016/j.jspi.2008.03.015CrossRefGoogle Scholar
Rosenbaum, P.R. & Rubin, D.B. (1983a) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. Journal of the Royal Statistical Society, Series B 45, 212218.Google Scholar
Rosenbaum, P.R. & Rubin, D.B. (1983b) The central role of the propensity score in observational studies for causal effects. Biometrika 70, 4155.10.1093/biomet/70.1.41CrossRefGoogle Scholar
Rüschendorf, L. (1982) Random variables with maximum sums. Advances in Applied Probability 14, 623632.10.2307/1426677CrossRefGoogle Scholar
Schweizer, B. & Sklar, A. (1983) Probabilistic Metric Spaces. North-Holland.Google Scholar
Shaikh, A.M. & Vytlacil, E. (2005) Threshold Crossing Models and Bounds on Treatment Effects: A Nonparametric Analysis. Working paper t0307, National Bureau of Economic Research.10.3386/t0307CrossRefGoogle Scholar
Sklar, A. (1959) Fonctions de réartition à n dimensions et leures marges. Publications de l'Institut de Statistique de L'Université de Paris 8, 229231.Google Scholar
Stoye, J. (2009) Partial Identification of Spread Parameters. Working paper, Department of Economics, New York University.Google Scholar
Tchen, A.H. (1980) Inequalities for distributions with given marginals. Annals of Probability 8, 814827.10.1214/aop/1176994668CrossRefGoogle Scholar
Tesfatsion, L. (1976) Stochastic dominance and the maximization of expected utility. Review of Economic Studies 43, 301315.10.2307/2297326CrossRefGoogle Scholar
van der Vaart, A.W. (1998) Asymptotic Statistics. Cambridge University Press.10.1017/CBO9780511802256CrossRefGoogle Scholar
van der Vaart, A.W. & Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer.10.1007/978-1-4757-2545-2CrossRefGoogle Scholar
Williamson, R.C. & Downs, T. (1990) Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds. International Journal of Approximate Reasoning 4, 89158.10.1016/0888-613X(90)90022-TCrossRefGoogle Scholar