Published online by Cambridge University Press: 06 September 2012
The structure of a self-similar set with the open set condition does not change under magnification. For self-affine sets, the situation is completely different. We consider self-affine Cantor sets $E\subset \mathbb {R}^2$ of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that in small square $\varepsilon $-neighborhoods $N$ of almost each point $x$ in $E,$ with respect to many Bernoulli measures on the address space, $E\cap N$ is well approximated by product sets $[0,1]\times C$, where $C$ is a Cantor set. Even though $E$ is totally disconnected, all tangent sets have a product structure with interval fibers, reminiscent of the view of attractors of chaotic differentiable dynamical systems. We also prove that $E$has uniformly scaling scenery in the sense of Furstenberg, Gavish and Hochman: the family of tangent sets is the same at almost all points$x.$
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.