Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T06:26:24.988Z Has data issue: true hasContentIssue false

Analytic destruction of invariant circles

Published online by Cambridge University Press:  19 September 2008

Giovanni Forni
Affiliation:
Dipartimento di Matematica, Universita' di Bologna, Piazza di Porta S. Donato 5, 40127 Bologna, Italy

Abstract

We give destruction results under analytic small perturbations for invariant circles of exact area-preserving monotone twist maps, applying methods developed by M. Herman and J. Mather.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ba]Bangert, V.. Mather sets for twist maps and geodesies on tori. Dynamics Reported 1 (1988), 145.CrossRefGoogle Scholar
[Br1]Brjuno, A.D.. Analytical form of differential equations. Trans. Moscow Math. Soc. 25 (1971), 131288; 26 (1972), 199–239.Google Scholar
[Br2]Brjuno, A.D.. Local Methods in Nonlinear Differential Equations. Springer: Berlin, 1989.CrossRefGoogle Scholar
[Cr]Cremer, H.. Über die Häufigkeit der Nichtzentren. Math. Ann. 115 (1938), 573580.CrossRefGoogle Scholar
[He1]Herman, M.R.. Sur la conjugaison différentiate des difféomorphismes du cercle á des rotations. Publ. Math. IHES 49 (1979), 5233.CrossRefGoogle Scholar
[He2]Herman, MR.. Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Asterisque 103–104 (1983).Google Scholar
[MK]MacKay, R.S.. Exact results for an approximate renormalization scheme and some predictions for the breakup of invariant tori. Physica 33D (1988), 240265;Google Scholar
Erratum, Physica 36D (1989), 358.Google Scholar
[M-S]Marmi, S. & Stark, J.. On the standard map critical function. Nonlinearity 5 (1992), 743761.CrossRefGoogle Scholar
[Ma1]Mather, J. N.. Existence of quasi periodic orbits for twist homeomorphisms of the annulus. Topology 21 (1982), 457467.CrossRefGoogle Scholar
[Ma2]Mather, J.N.. Non-uniqueness of solutions of Percival's Euler-Lagrange equations. Commun. Math. Phys. 86 (1983), 465473.CrossRefGoogle Scholar
[Ma3]Mather, J. N.. A criterion for the non existence of invariant circles. Publ. Math. IHES 63 (1986), 153204.CrossRefGoogle Scholar
[Ma4]Mather, J. N.. Letter to R.S. MacKay, February 1984.Google Scholar
[Ma5]Mather, J. N.. Modulus of continuity for Peierls's barrier. Periodic Solutions of Hamiltonian Systems and Related Topics, ed. Rabinowitz, P.H. et al. NATO ASI Series C 209. Reidel: Dordrecht, 1987, 177202.CrossRefGoogle Scholar
[Ma6]Mather, J. N.. Destruction of invariant circles. Ergod. Th. & Dynam. Sys. 8 (1988), 199214.Google Scholar
[P-M]Perez-Marco, R.. Sur la structure des germes holomorphes non linéarisables. C. R. Acad. Sci. Paris 312 (I) (1991), 533536.Google Scholar
[Po]Poincaré, H.. Oeuvres. Vol. I. Gauthier-Villars: Paris, 19281956.Google Scholar
[Ru]Rudin, W.. Real and Complex Analysis. McGraw-Hill: New York, 1966.Google Scholar
[Rs1]Rüssmann, H.. On optimal estimates for the solutions of linear partial differential equations with first order coefficients on the torus. Dynam. Systems, Theory and Applications. Moser, J., ed., pp. 598624, Springer Lecture Notes in Physics 38 Springer: New York, 1975.CrossRefGoogle Scholar
[Rs2]R¨ssmann, H.. On the one-dimensional Schrödinger equation with a quasi-periodic potential. Ann. NY Acad. Sci. 357 (1980), 91107.Google Scholar
[Rs3]R¨ssmann, H.. On an inequality for trigonometric polynomials in several variables. Analysis, et cetera Academic: Boston, 1990, 545562.CrossRefGoogle Scholar
[Rs4]R¨ssmann, H.. On the frequencies of quasi periodic solutions of analytic nearly integrable Hamiltonian systems. Preprint. Euler International Mathematical Institute, St Petersburg, Dynamical Systems, 142710 1991.Google Scholar
[S-Z]Salamon, D. & Zehnder, E.. KAM theory in configuration space. Comment. Math. Helv. 64 (1989), 84132.CrossRefGoogle Scholar
[Si]Siegel, C.L.. Iteration of analytic functions. Ann. Math. 43 (1942), 807812.CrossRefGoogle Scholar
[Vt]Vittot, M.. Lindstedt perturbation series in Hamiltonian mechanics: explicit formulation via a multidimensional Burmann-Lagrange formula. Preprint. Centre de Physique Theorique, CNRS Luminy, Marseille, 1992.Google Scholar
[Yo]Yoccoz, J.C.. Théorème de Siegel, polynômes quadratiques et nombres de Brjuno. Preprint. Orsay, 1988 (to appear in Asterisque).Google Scholar
[Zg]Zygmund, A.. Trigonometric Series. Cambridge University Press: Cambridge, 1935.Google Scholar