Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T06:56:55.083Z Has data issue: false hasContentIssue false

Canonical compactifications for Markov shifts

Published online by Cambridge University Press:  08 February 2012

DORIS FIEBIG*
Affiliation:
Universität Kassel, Fachbereich 10, Mathematik und Naturwissenschaften, Institut für Mathematik, D-34109 Kassel, Germany (email: fiebig.doris@freenet.de)

Abstract

We give a complete characterization of the compact metric dynamical systems that appear as boundaries of the canonical compactification of a locally compact countable state mixing Markov shift. Consider such a compact metric dynamical system. Then there is a pair of non-conjugate Markov shifts with conjugate canonical compactifications, one of which has the given compact system as canonical boundary.

Type
Research Article
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Boyle, M., Buzzi, J. and Gomez, R.. Almost isomorphism for countable state Markov shifts. J. Reine Angew. Math. 592 (2006), 2347.Google Scholar
[2]Boyle, M. and Krieger, W.. Periodic points and automorphisms of the shift. Amer. Math. Soc. 302 (1988), 71114.Google Scholar
[3]Fiebig, D. and Fiebig, U.. Topological boundaries for countable state Markov shifts. Proc. Lond. Math. Soc. III Ser. 70(3) (1995), 625643.Google Scholar
[4]Gurevic, B. M.. Topological entropy of enumerable Markov chains. Dokl. Akad. Nauk SSSR 187 (1969), 715718; English transl. Soviet Math. Dokl. 10 (1969), 911–915.Google Scholar
[5]Kim, K. H., Ormes, N. and Roush, F.. The spectra of non-negative integer matrices via formal power series. J. Amer. Math. Soc. 13 (2000), 773806.Google Scholar
[6]Kim, K. H. and Roush, F. W.. On the automorphism groups of subshifts. Pure Math. Appl. Ser. B 2 (1991), 322.Google Scholar
[7]Kim, K. H. and Roush, F. W.. The William’s conjecture is false for irreducible subshifts. Ann. Math. 149 (1999), 545558.Google Scholar
[8]Kim, K. H., Roush, F. W. and Wagoner, J. B.. Automorphisms of the dimension group and gyration numbers of automorphisms of a shift. J. Amer. Math. Soc. 5 (1992), 191211.Google Scholar
[9]Kitchens, B. P.. Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts. Springer, Berlin, Heidelberg, 1998.Google Scholar
[10]Lind, D.. The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys. 4 (1984), 283300.Google Scholar
[11]Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.Google Scholar
[12]Schraudner, M.. The canonical-boundary representation for automorphism groups of locally compact countable state Markov shifts. Israel J. Math. 159 (2007), 253275.Google Scholar
[13]Schraudner, M.. On the algebraic properties of the automorphism groups of countable state Markov shifts. Ergod. Th. & Dynam. Sys. 26(2) (2006), 551583.Google Scholar