Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T20:00:30.109Z Has data issue: false hasContentIssue false

Numerical analysis of Eulerian multi-fluid models in the contextof kinetic formulations for dilute evaporating sprays

Published online by Cambridge University Press:  22 July 2006

Frédérique Laurent*
Affiliation:
EM2C, CNRS, École Centrale de Paris, Châtenay-Malabry, France. frederique.laurent@em2c.ecp.fr
Get access

Abstract

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays.First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue.The classical multi-fluid method consists then in a discretization of the droplet size variable into cells called sections.This analysis provides a justification of the “right” choice for this discretization to obtain a first order accurate and monotone scheme, with no restrictive CFL condition.This result leads to the development of a class of methods of arbitrary high order accuracy through the use of moments on the droplet surface in each section and a Godunov type method.Moreover, an extension of the two moments method is proposed which preserves the positivity and limits the total variation.Numerical results of the multi-fluid methods are compared to examine their capability to accurately describe the mass density in the spray with a small number of variables.This is shown to be a key point for the use of such methods in realistic flow configurations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.A. Amsden, P.J. O'Rourke and T.D. Butler, Kiva II, a computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS. Los Alamos National Laboratory, Los Alamos, New Mexico (1989).
G. Chanteperdrix, P. Villedieu and J.P. Vila, A compressible model for separated two-phase flows computations, in ASME Fluids Engineering Division Summer Meeting, number 31141, Montreal (2002).
Domelevo, K., The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray. 11 (2001) 291303. CrossRef
Domelevo, K. and Sainsaulieu, L., A numerical method for the computation of the dispersion of a cloud of particles by a turbulent gas flow field. J. Comput. Phys. 133 (1997) 256278. CrossRef
D.A. Drew and S.L. Passman, Theory of multicomponent fluids. Applied Mathematical Sciences, Springer 135 (1999).
Dufour, G. and Villedieu, P., A second-order multi-fluid model for evaporating sprays. ESAIM: M2AN 39 (2005) 931963. CrossRef
Dukowicz, J.K., A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229253. CrossRef
Greenberg, J.B., Albagli, D. and Tambour, Y., An opposed jet quasi-monodisperse spray diffusion flame. Combust. Sci. Technol. 50 (1986) 255270. CrossRef
Greenberg, J.B., Silverman, I. and Tambour, Y., On the origin of spray sectional conservation equations. Combust. Flame 93 (1993) 9096. CrossRef
H. Guillard and A. Murrone, A five equation reduced model for compressible two phase flow problems. Prepublication 4778, INRIA (2003).
Harten, A., Hyman, J.M. and Lax, P.D., On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297322. With an appendix by B. Keyfitz. CrossRef
J. Hylkema, Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes. Application aux propulseurs à poudre. Ph.D. thesis, ENSAE (1999).
Laurent, F., Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent. C. R. Math. Acad. Sci. Paris 334 (2002) 417422. CrossRef
F. Laurent, Modélisation mathématique et numérique de la combustion de brouillards de gouttes polydispersés. Ph.D. thesis, Université Claude Bernard, Lyon 1 (2002).
Laurent, F. and Massot, M., Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537572. CrossRef
Laurent, F., Massot, M. and Villedieu, P., Eulerian multi-fluid modeling for the numerical simulation of polydisperse dense liquid spray. J. Comput. Phys. 194 (2004) 505543. CrossRef
Laurent, F., Santoro, V., Noskov, M., Gomez, A., Smooke, M.D. and Massot, M., Accurate treatment of size distribution effects in polydispersed spray diffusion flames: multi-fluid modeling, computations and experiments. Combust. Theor. Model. 8 (2004) 385412. CrossRef
R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser Verlag, Basel, second edition (1992).
Marchisio, D.L., Vigil, R.D. and Fox, R.O., Quadrature method of moments for aggregation-breakage processes. J. Colloid Interf. Sci. 258 (2003) 322334. CrossRef
Massot, M. and Villedieu, P., Modélisation multi-fluide eulérienne pour la simulation de brouillards denses polydispersés. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 869874. CrossRef
M. Massot, M. Kumar, A. Gomez and M.D. Smooke, Counterflow spray diffusion flames of heptane: computations and experiments, in Proceedings of the 27th Symp. (International) on Combustion, The Comb. Institute (1998) 1975–1983.
P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, University of Princeton (1981).
D. Ramkrishna and A.G. Fredrickson, Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press (2000).
Raviart, P.-A. and Sainsaulieu, L., A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Mod. Meth. Appl. S. 5 (1995) 297333. CrossRef
Rüger, M., Hohmann, S., Sommerfeld, M. and Kohnen, G., Euler/Lagrange calculations of turbulent sprays : the effect of droplet collisions and coalescence. Atomization Spray. 10 (2000) 4781. CrossRef
van Leer, B., Towards the ultimate conservative difference scheme v. a second order sequel to godunov's method. J. Comput. Phys. 32 (1979) 101136. CrossRef
Villedieu, P. and Hylkema, J., Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 323328. CrossRef
Williams, F.A., Spray combustion and atomization. Phys. Fluids 1 (1958) 541545. CrossRef
F.A. Williams, Combustion Theory (Combustion Science and Engineering Series). F.A. Williams Ed., Reading, MA: Addison-Wesley (1985).
Wright, D.L., McGraw, R. and Rosner, D.E., Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242251. CrossRef