Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T13:08:24.061Z Has data issue: false hasContentIssue false

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

Published online by Cambridge University Press:  04 July 2008

Alexei Bespalov
Affiliation:
Department of Mathematical Sciences, Brunel University, Uxbridge, West London UB8 3PH, UK. albespalov@yahoo.com; norbert.heuer@gmail.com
Norbert Heuer
Affiliation:
Department of Mathematical Sciences, Brunel University, Uxbridge, West London UB8 3PH, UK. albespalov@yahoo.com; norbert.heuer@gmail.com
Get access

Abstract

We prove an a priori error estimate for the hp-version of the boundaryelement method with hypersingular operators on piecewise plane open orclosed surfaces. The underlying meshes are supposed to be quasi-uniform.The solutions of problems on polyhedral or piecewise plane open surfaces exhibittypical singularities which limit the convergence rate of the boundary element method.On closed surfaces, and for sufficiently smooth given data, the solution isH 1-regular whereas, on open surfaces, edge singularities arestrong enough to prevent the solution from being in H 1.In this paper we cover both cases and, in particular, prove an a priorierror estimate for the h-version with quasi-uniform meshes.For open surfaces we prove a convergence like O(h1/2p-1),h being the mesh size and p denoting the polynomial degree.This result had been conjectured previously.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Ainsworth and L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear).
Ainsworth, M. and The, D. Kay approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82 (1999) 351388. CrossRef
Ainsworth, M. and Pinchedez, K., The hp-MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math. 148 (2002) 429462. CrossRef
Ainsworth, M., McLean, W. and Tran, T., The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 19011932. CrossRef
Babuška, I. and Guo, B.Q., Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer. Math. 85 (2000) 219255.
Babuška, I. and Suri, M., The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199238. CrossRef
Babuška, I. and Suri, M., The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24 (1987) 750776. CrossRef
Babuška, I. and Suri, M., The treatment of nonhomogeneous Dirichlet boundary conditions by the p-version of the finite element method. Numer. Math. 55 (1989) 97121. CrossRef
Babuška, I., Kellogg, R.B. and Pitkäranta, J., Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33 (1979) 447471. CrossRef
J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin (1976).
Bespalov, A. and Heuer, N., The p-version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math. 100 (2005) 185209. CrossRef
Bespalov, A. and Heuer, N., The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math. 106 (2007) 6997. CrossRef
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
Costabel, M., Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613626. CrossRef
L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics 1939, Springer-Verlag (2008).
Demkowicz, L. and Babuška, I., p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 11951208. CrossRef
Ervin, V.J. and Heuer, N., An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297325. CrossRef
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985).
Guo, B.Q., Approximation theory for the p-version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal. 44 (2006) 246269. CrossRef
Guo, B.Q. and Heuer, N., The optimal rate of convergence of the p-version of the boundary element method in two dimensions. Numer. Math. 98 (2004) 499538. CrossRef
Guo, B.Q. and Heuer, N., The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math. 24 (2006) 353374. CrossRef
Heuer, N. and Leydecker, F., An extension theorem for polynomials on triangles. Calcolo 45 (2008) 6985. CrossRef
Heuer, N., Maischak, M. and Stephan, E.P., Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math. 83 (1999) 641666. CrossRef
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972).
Monk, P., On the p- and hp-extension of Nédélec's curl-conforming elements. J. Comput. Appl. Math. 53 (1994) 117137. CrossRef
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967).
C. Schwab, p- and hp-Finite Element Methods. Clarendon Press, Oxford (1998).
Schwab, C. and Suri, M., The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal. 33 (1996) 729759. CrossRef
Stephan, E.P., Boundary integral equations for screen problems in $\mathbb{R}^3$ . Integr. Equ. Oper. Theory 10 (1987) 257263. CrossRef
Stephan, E.P., The h-p boundary element method for solving 2- and 3-dimensional problems. Comput. Methods Appl. Mech. Engrg. 133 (1996) 183208. CrossRef
Stephan, E.P. and Suri, M., The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25 (1991) 783807. CrossRef
T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989).
von Petersdorff, T. and Stephan, E.P., Regularity of mixed boundary value problems in $\mathbb{R}^3$ and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229249. CrossRef