Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T10:03:43.544Z Has data issue: false hasContentIssue false

Some new results in multiphase geometrical optics

Published online by Cambridge University Press:  15 April 2002

Olof Runborg*
Affiliation:
Program in Applied and Computational Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544, USA. (orunborg@math.princeton.edu)
Get access

Abstract

In order to accommodate solutions with multiple phases, corresponding to crossing rays, weformulate geometrical optics for the scalar wave equation as a kinetic transport equation set in phase space. If the maximum number of phases is finite and known a priori we can recover the exact multiphase solution from anassociated system of moment equations, closed by an assumption on the form of the density function in the kinetic equation. We consider two different closure assumptions based ondelta and Heaviside functions and analyze the resultingequations. They form systems of nonlinear conservation laws with source terms. In contrast to the classicaleikonal equation, theseequations will incorporate a "finite" superposition principle in the sense that while the maximum number of phasesis not exceeded a sum of solutions is also a solution. We present numerical results for a varietyof homogeneous and inhomogeneous problems.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. and Benamou, J.-D., Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model. Geophysics 64 (1999) 230-239. CrossRef
Benamou, J.-D., Big ray tracing: Multivalued travel time field computation using viscosity solutions of the eikonal equation. J. Comput. Phys. 128 (1996) 463-474. CrossRef
Benamou, J.-D., Direct solution of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999) 1443-1475. 3.0.CO;2-Y>CrossRef
J.-D. Benamou, F. Castella, T. Katsaounis and B. Perthame, High frequency limit of the Helmholtz equation. Research report DMA-99-25, Département de Mathématiques et Applications, École Normale Supérieure, Paris (1999).
F. Bouchut, On zero pressure gas dynamics, in Advances in kinetic theory and computing, Ser. Adv. Math. Appl. Sci. 22, World Sci. Publishing, River Edge, NJ (1994) 171-190.
Bouchut, F. and James, F., Équations de transport unidimensionnelles à coefficients discontinus. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 1097-1102.
Bouchut, F. and James, F., Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Comm. Partial Differential Equations 24 (1999) 2173-2189.
Brenier, Y. and Corrias, L., A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15 (1998) 169-190. CrossRef
Brenier, Y. and Grenier, E., Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998) 2317-2328. CrossRef
F. Castella, O. Runborg and B. Perthame, High frequency limit of the Helmholtz equation II: Source on a general smooth manifold. Research report, Département de Mathématiques et Applications, École Normale Supérieure, Paris (2000).
Crandall, M. and Lions, P., Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. CrossRef
Yu, W. E.G. Rykov and Ya.G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380.
Engquist, B., Fatemi, E. and Osher, S., Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155.
Engquist, B. and Runborg, O., Multiphase computations in geometrical optics. J. Comput. Appl. Math. 74 (1996) 175-192. CrossRef
B. Engquist and O. Runborg, Multiphase computations in geometrical optics, in Hyperbolic Problems: Theory, Numerics, Applications, M. Fey and R. Jeltsch Eds., Internat. Ser. Numer. Math. 129, ETH Zentrum, Zürich, Switzerland (1998).
Gérard, P., Markowich, P.A., Mauser, N.J. and Poupaud, F., Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. 3.0.CO;2-C>CrossRef
Gosse, L. and James, F., Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comp. 69 (2000) 987-1015. CrossRef
Grad, H., On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. CrossRef
Grenier, E., Existence globale pour le système des gaz sans pression. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 171-174.
Jiang, G.-S. and Tadmor, E., Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. CrossRef
Keller, J., Geometrical theory of diffraction. J. Opt. Soc. Amer. 52 (1962) 116-130. CrossRef
Kouyoumjian, R.G. and Pathak, P.H., A uniform theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62 (1974) 1448-1461. CrossRef
Yu.A. Kravtsov, On a modification of the geometrical optics method. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 (1964) 664-673.
R.J. LeVeque, Numerical Methods for Conservation Laws. Birkhäuser (1992).
Levermore, C.D., Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021-1065. CrossRef
Lions, P.-L. and Paul, T., Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. CrossRef
Ludwig, D., Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19 (1966) 215-250. CrossRef
Osher, S. and Shu, C.-W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. CrossRef
Poupaud, F. and Rascle, M., Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. Partial Differential Equations 22 (1997) 337-358. CrossRef
O. Runborg, Multiscale and Multiphase Methods for Wave Propagation. Ph.D. thesis, Department of Numerical Analysis and Computing Science, KTH, Stockholm (1998).
W.W. Symes, A slowness matching finite difference method for traveltimes beyond transmission caustics. Preprint, Dept. of Computational and Applied Mathematics, Rice University (1996).
Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. CrossRef
van Trier, J. and Symes, W.W., Upwind finite-difference calculation of traveltimes. Geophysics 56 (1991) 812-821. CrossRef
Vidale, J., Finite-difference calculation of traveltimes. Bull. Seismol. Soc. Amer. 78 (1988) 2062-2076.
G.B. Whitham, Linear and Nonlinear Waves. John Wiley & Sons (1974).
Y. Zheng, Systems of conservation laws with incomplete sets of eigenvectors everywhere, in Advances in Nonlinear Partial Differential Equations and Related Areas, World Sci. Publishing, River Edge, NJ (1998) 399-426.