Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:45:29.120Z Has data issue: false hasContentIssue false

Crystal precipitation and dissolution in a thin strip

Published online by Cambridge University Press:  01 February 2009

T. L. VAN NOORDEN*
Affiliation:
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands email: t.l.v.noorden@tue.nl

Abstract

We present a two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium. The local geometry of the pore is represented as a thin strip and the model allows for changes in the pore volume. A formal limiting argument, for the limit of the width of the strip going to zero, leads to a system of one-dimensional effective upscaled equations. We show that the effective equations allow for travelling-wave solutions and prove the existence and uniqueness of these. Numerical solutions of the effective equations are compared with numerical solutions of the original equations on the thin strip and with analytical results. We also show that a model from the literature that does not allow changes in the pore volume can be obtained from the present model as a formal limit.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brown, R., Hu, W. & Lieberman, G. (1997) Weak solutions of parabolic equations in non-cylindrical domains. Proc. Amer. Math. Soc. 125, 17851792.CrossRefGoogle Scholar
[2]Donea, J., Huerta, A., Ponthot, J.-Ph. & Rodríguez-Ferran, A. (2004) Arbitrary Lagrangian–Eulerian methods. In: Stein, E., Borst, R. De & Hughes, T. J. R. (editors), Encyclopedia of Computational Mechanics, Vol. 1(Fundamentals), Chap. 14, John Wiley & Sons.Google Scholar
[3]Eymard, R., Gallouët, T., Herbin, R., Hilhorst, D. & Mainguy, M. (1999) Instantaneous and non-instantaneous dissolution: Approximation by the finite volume method. In: Actes du 30ème Congrès d'Analyse Numérique: CANum '98 (Arles, 1998), vol. 6 of ESAIM Proc., pp. 41–55 (electronic). Soc. Math. Appl. Indust., Paris.CrossRefGoogle Scholar
[4]Fasano, A. (2005) Mathematical models of some diffusive processes with free boundaries, vol. 11 of MAT. Serie A: Conferencias, Seminarios y Trabajos de Matemática [MAT. Series A: Mathematical Conferences, Seminars and Papers]. Universidad Austral, Facultad de Ciencias Empresariales (FCE-UA), Departamento de Matemática, Rosario.CrossRefGoogle Scholar
[5]Faugeras, B., Pousin, J. & Fontvieille, F. (2006) An efficient numerical scheme for precise time integration of a diffusion-dissolution/precipitation chemical system. Math. Comp. 75 (253), 209222 (electronic).CrossRefGoogle Scholar
[6]Hornung, U., Jäger, W. & Mikelić, A. (1994) Reactive transport through an array of cells with semi-permeable membranes. RAIRO Modél. Math. Anal. Numér. 28 (1), 5994.CrossRefGoogle Scholar
[7]Knabner, P., van Duijn, C. J. & Hengst, S. (1995) An analysis of crystal dissolution fronts in flows through porous media. Part 1: Compatible boundary conditions. Adv. Water Res. 18, 171185.CrossRefGoogle Scholar
[8]Maisse, E. & Pousin, J. (1997) Diffusion and dissolution/precipitation in an open porous reactive medium. J. Comput. Appl. Math. 82 (1–2), 279290. 7th ICCAM 96 Congress (Leuven).CrossRefGoogle Scholar
[9]Tartakovsky, A. M., Scheibe, T., Redden, G., Meakin, P. & Fang, Y. (2006) Smoothed particle hydrodynamics model for reactive transport and mineral precipitation. In: P. J. Binning, P. K. Engesgaard, H. K. Dahle, G. F. Pinder & W. G. Gray (editors), Proceedings of the XVI International Conference on Computational Methods in Water Resources, June 2006, Copenhagen, Denmark. http://proceedings.cmwr-xvi.org.CrossRefGoogle Scholar
[10]Tartakovsky, A. M., Meakin, P., Scheibe, T. D. & Eichler West, R. M. (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222 (2), 654672.CrossRefGoogle Scholar
[11]van Duijn, C. J. & Knabner, P. (1991) Solute transport in porous media with equilibrium and non-equilibrium multiple-site adsorption: Travelling waves. J. Reine Angew. Math. 415, 149.Google Scholar
[12]vanDuijn, C. J. Duijn, C. J. & Knabner, P. (1997) Travelling wave behaviour of crystal dissolution in porous media flow. European J. Appl. Math. 8 (1), 4972.Google Scholar
[13]van Duijn, C. J., Peletier, L. A. & Schotting, R. J. (1993) On the analysis of brine transport in porous media. European J. Appl. Math. 4 (3), 271302.CrossRefGoogle Scholar
[14]van Duijn, C. J. & Pop, I. S. (2004) Crystal dissolution and precipitation in porous media: Pore scale analysis. J. Reine Angew. Math. 577, 171211.Google Scholar
[15]van Duijn, C. J. & Schotting, R. J. (1998) Brine transport in porous media: On the use of Von Mises and similarity transformations. Comput. Geosci. 2 (2), 125149.CrossRefGoogle Scholar
[16]van Noorden, T. L. & Pop, I. S. (2008) A Stefan problem modelling dissolution and precipitation. IMA J. Appl. Math. 73, 393411.CrossRefGoogle Scholar
[17]vanNoorden, T. L. Noorden, T. L., Pop, I. S. & Röger, M. (2007) Crystal dissolution and precipitation in porous media: L1-contraction and uniqueness. Discrete Contin. Dyn. Syst., suppl., 1013–1020.Google Scholar