Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T08:49:39.883Z Has data issue: false hasContentIssue false

Weak solvability of a piezoelectric contact problem

Published online by Cambridge University Press:  01 April 2009

STANISŁAW MIGÓRSKI
Affiliation:
Faculty of Mathematics and Computer Science, Institute of Computer Science, Jagiellonian University, Nawojki 11, 30072 Krakow, Poland email: Stanislaw.Migorski@softlab.ii.uj.edu.pl; ochal@softlab.ii.uj.edu.pl
ANNA OCHAL
Affiliation:
Faculty of Mathematics and Computer Science, Institute of Computer Science, Jagiellonian University, Nawojki 11, 30072 Krakow, Poland email: Stanislaw.Migorski@softlab.ii.uj.edu.pl; ochal@softlab.ii.uj.edu.pl
MIRCEA SOFONEA
Affiliation:
Laboratoire de Mathématiques, Physique et Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France email: sofonea@univ-perp.fr

Abstract

We consider a mathematical model which describes the frictional contact between a piezoelectric body and a foundation. The material behaviour is modelled with a non-linear electro-elastic constitutive law, the contact is bilateral, the process is static and the foundation is assumed to be electrically conductive. Both the friction law and the electrical conductivity condition on the contact surface are described with subdifferential boundary conditions. We derive a variational formulation of the problem which is of the form of a system of two coupled hemi-variational inequalities for the displacement and the electric potential fields, respectively. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proof is based on an abstract result on operator inclusions in Banach spaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aubin, J.-P. (1984) L'analyse non linéaire et ses motivations économiques, Masson, Paris.Google Scholar
[2]Barboteu, M., Fernandez, J. R. & Raffat, T. Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Eng. to appear.Google Scholar
[3]Batra, R. C. & Yang, J. S. (1995) Saint-Venant's principle in linear piezoelectricity. J. Elasticity 38, 209218.CrossRefGoogle Scholar
[4]Bisegna, P., Lebon, F. & Maceri, F. (2002) The unilateral frictional contact of a piezoelectric body with a rigid support. In: Martins, J. A. C. & Marques, Manuel D. P. Monteiro (editors), Contact Mechanics, Kluwer, Dordrecht, pp. 347354.CrossRefGoogle Scholar
[5]Clarke, F. H. (1983) Optimization and Nonsmooth Analysis, Wiley, Interscience, New York.Google Scholar
[6]Denkowski, Z., Migórski, S. & Papageorgiou, N. S. (2003) An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York.Google Scholar
[7]Denkowski, Z., Migórski, S. & Papageorgiou, N. S. (2003) An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston.CrossRefGoogle Scholar
[8]Han, W. & Sofonea, M. (2002) Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. In: Studies in Advanced Mathematics 30, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
[9]Ikeda, T. (1990) Fundamentals of Piezoelectricity, Oxford University Press, Oxford.Google Scholar
[10]Maceri, F. & Bisegna, P. (1998) The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Model. 28, 1928.CrossRefGoogle Scholar
[11]Migórski, S. (2006) Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete Continuous Dynam. Syst. – Ser. B 6, 13391356.CrossRefGoogle Scholar
[12]Migórski, S. (2008) A class of hemivariational inequality for electroelastic contact problems with slip dependent friction. Discrete Continuous Dynam. Syst. – Ser. S 1, 117126.Google Scholar
[13]Panagiotopoulos, P. D. (1993) Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[14]Patron, V. Z. & Kudryavtsev, B. A. (1988) Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon & Breach, London.Google Scholar
[15]Shillor, M., Sofonea, M. & Telega, J. J. (2004) Models and Analysis of Quasistatic Contact, Springer, Berlin.CrossRefGoogle Scholar
[16]Sofonea, M. & Essoufi, El H. (2004) A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9, 229242.CrossRefGoogle Scholar
[17]Yang, J. S., Batra, R. C. & Liang, X. Q. (1994) The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Mat. Struct. 3, 485493.CrossRefGoogle Scholar
[18]Yang, J. & Yang, J. S. (2005) An Introduction to the Theory of Piezoelectricity, Springer, New York.Google Scholar
[19]Zeidler, E. (1990) Nonlinear Functional Analysis and Applications II A/B, Springer, New York.Google Scholar