Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:06:38.036Z Has data issue: false hasContentIssue false

Insurance, Big Data and Changing Conceptions of Fairness

Published online by Cambridge University Press:  06 July 2020

Laurence Barry*
Affiliation:
chaire PARI (ENSAE/Sciences Po), Paris, France [Laurence.Barry@datastorm.fr]
Get access

Abstract

This paper aims to show how insurance mechanisms that historically propelled a conception of fairness based on solidarity and a collective approach shifted along the 20th century towards an idealistic adjustment to individual risk. Insurance originally assumed that, while individual hazards remained unknown, risk could be measured and managed on the aggregate. An examination of the proceedings of the American Casualty Actuarial Society (CAS) during the 20th century demonstrates the slow crystallization of another conception of fairness, that aims at a scientific adjustment of insurance premiums to actual “individual risks.” I argue that this conception of fairness deconstructs the one based on solidarity. Big data technologies have further radicalized this shift. By aiming at predictive individual risk scores rather than average costs estimated on the aggregate, the algorithms contribute to replacing fairness as solidarity by the correctness of a computation.

Résumé

Résumé

Cet article montre comment les mécanismes d’assurance qui ont historiquement favorisé une conception de l’équité fondée sur la solidarité et une approche collective se sont déplacés au cours du xxe siècle vers un ajustement idéalisé autour du risque individuel. À l’origine, les assurances partaient du principe que si les aléas individuels restaient inconnus, le risque pouvait être mesuré et géré globalement. L’examen des travaux de l’American Casualty Actuarial Society (CAS) au cours du xxe siècle met en évidence la lente cristallisation d’une autre conception de l’équité, l’équité actuarielle, qui recherche un ajustement scientifique des primes d’assurance autour des “risques individuels” réels. Je considère que cette conception de l’équité déconstruit celle fondée sur la solidarité. Les technologies de données massives contribuent toujours plus à radicaliser ce changement. En produisant des scores de risque individuels prédictifs plutôt que des coûts moyens estimés sur une totalité, les algorithmes contribuent à remplacer l’équité comme solidarité par la justesse d’un calcul.

Zusammenfassung

Zusammenfassung

Dieser Artikel zeigt, wie sich Versicherungsmechanismen, deren Ursprünge auf eine ausgleichende Gerechtigkeit mit solidarischem und kollektivem Ansatz zurückgehen, im Laufe des 20. Jahrhunderts zu einer idealisierten Anpassung an individuelle Risiken weiterentwickelt haben. Ursprünglich galt für Versicherungen folgende Prämisse: selbst wenn individuelle Gefahren unbekannt bleiben, kann das Risiko global gemessen und gehandhabt werden. Ein Rückblick auf die Arbeit der American Casualty Actuarial Society (CAS) während des 20. Jahrhunderts verdeutlicht die langsame Herauskristallisierung einer anderen Definition von ausgleichender Gerechtigkeit, und zwar der versicherungsmathematischen Gerechtigkeit, mit dem erklärten Ziel einer wissenschaftlichen Anpassung der Versicherungsprämien an reale „individuellen Risiken“. Ich bin der Meinung, dass diese Vorstellung von Gerechtigkeit die auf Solidarität beruhende dekonstruiert. Massive Datentechnologien tragen zunehmend dazu bei, diesen Wandel zu radikalisieren. Wenn prädiktive individuelle Risiko-Scores anstatt geschätzter Durchschnittskosten einer Gesamtgröße genutzt werden, führen Algorithmen dazu, dass die solidarisch getragene Gerechtigkeit durch die Richtigkeit einer Berechnung ersetzt wird.

Type
Research Article
Copyright
© European Journal of Sociology 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, Andrew, 1988. The System of the Professions. An Essay of the Division of Expert Labour (Chicago, Chicago university press).CrossRefGoogle Scholar
American Academy of Actuaries, 2015. Charting the Course––the American Academy at 50, AAA [https://www.actuary.org/sites/default/files/files/charting_the_course_final.pdf].Google Scholar
Armstrong, Chris, 2005. “Equality, Risk and Responsibility: Dworkin on the Insurance Market,” Economy and Society, 34 (3): 451473 [https://doi.org/10.1080/03085140500111915].CrossRefGoogle Scholar
Austin, Regina, 1983. “The Insurance Classification Controversy,” University of Pennsylvania Law Review, 131 (3): 517583 [https://doi.org/10.2307/3311844].CrossRefGoogle Scholar
Avraham, Ronen, 2017. “Discrimination and Insurance,” SSRN Scholarly Paper ID 3089946. Rochester, NY: Social Science Research Network [https://papers.ssrn.com/abstract=3089946].Google Scholar
Baker, Tom and Simon, Jonathan, 2002. “Embracing Risk,” in Baker, T and Simon, J., Embracing Risk: The Changing Culture of Insurance and Responsibility, 1-25 (University of Chicago Press).Google Scholar
Bamman, David, Eisenstein, Jacob and Schnoebelen, Tyler, 2014. “Gender Identity and Lexical Variation in Social Media,” Journal of Sociolinguistics, 18 (2): 135160 [https://doi.org/10.1111/josl.12080].CrossRefGoogle Scholar
Barry, Laurence and Fisher, Eran, 2019. “Digital Audiences and the Deconstruction of the Collective” [Subjectivity, August. https://doi.org/10.1057/s41286-019-00073-w].CrossRefGoogle Scholar
Batty, Mike, Tripathi, Arun, Kroll, Alice, Cheng-Sheng, Peter, Moore, David, Stehno, Chris, Lau, Lucas, Guszcza, Jim and Katcher, Mitch, 2010. “Predictive Modeling for Life Insurance,” Deloitte Consulting LLP [https://www.soa.org/globalassets/assets/files/research/projects/research-pred-mod-life-batty.pdf].Google Scholar
Beckert, Jens, 2013. “Imagined Futures: Fictional Expectations in the Economy,” Theory and Society, 42 (3): 219240 [https://doi.org/10.1007/s11186-013-9191-2].CrossRefGoogle Scholar
Beckert, Jens, 2016. Imagined Futures (Cambridge MA, Harvard University Press).CrossRefGoogle Scholar
Bian, Yiyang, J. Leon Zhao, Chen Yang and Liang, Liang, 2018. “Good Drivers Pay Less: A Study of Usage-Based Vehicle Insurance Models,” Transportation Research Part A: Policy and Practice, 107 (January): 2034 [https://doi.org/10.1016/j.tra.2017.10.018].Google Scholar
Bouk, Dan, 2015. How Our Days Became Numbered: Risk and the Rise of the Statistical Individual (Chicago /London, University of Chicago Press).CrossRefGoogle Scholar
Bouk, Dan, 2017. “The History and Political Economy of Personal Data over the Last Two Centuries in Three ActsOsiris, 32 (1): 85106 [https://doi.org/10.1086/693400].CrossRefGoogle Scholar
Bryan, Charles F., ed., 2014. 100 Years of Expertise (Arlington, Virginia: Casualty Actuarial Society) [http://centennial.casact.org/100-years/centennial-history-book/].Google Scholar
Callon, Michel and Muniesa, Fabian, 2003. “Les Marchés économiques comme dispositifs collectifs de calcul,” Réseaux, 21 (122): 189233.CrossRefGoogle Scholar
CAS (Casualty Actuarial Society), 1914. “Proceedings,” 1914-2019 [https://www.casact.org/pubs/proceed/].Google Scholar
Coutts, S. M., 1984. “Motor Insurance Rating, an Actuarial Approach,” Journal of the Institute of Actuaries, 111 (1): 87148 [https://doi.org/10.1017/S0020268100041561].CrossRefGoogle Scholar
Daston, Lorraine, 1987. “The Domestication of Risk: Mathematical Probability and Insurance, 1650-1830,” in Krüger, L., Daston, L. and Heidelberger, M., eds, The Probabilistic Revolution, vol. 1: Ideas in History (Cambridge, The MIT Press: 237261).Google Scholar
De Witt, G.W. and Van Eeghen, J., 1984. “Rate Making and Society’s Sense of Fairness,” ASTIN Bulletin, 14:2: 151164.CrossRefGoogle Scholar
Desrosières, Alain, 2008. L’Argument statistique. I, Pour une sociologie historique de la quantification (Paris, Presses de l’école des Mines).CrossRefGoogle Scholar
Ericson, Richard V. and Doyle, Aaron, 2004. Uncertain Business: Risk, Insurance, and the Limits of Knowledge (Toronto, University of Toronto Press) [https://www.jstor.org/stable/10.3138/9781442682849].Google Scholar
Ericson, Richard Victor, Doyle, Aaron and Barry, Dean, 2003. Insurance as Governance (University of Toronto Press).Google Scholar
Ewald, François, 1986. L’État Providence (Paris, Grasset).Google Scholar
Ewald, François, 1991. “Insurance and Risk,” in Burchell, G., Gordon, C. and Miller, P., eds The Foucault Effect - Studies in Governmentality (Chicago, The university of Chicago press: 197210).Google Scholar
Ewald, François, 2014. “Assurance-Prévention-Prédiction. Big data et société––Institut Montparnasse,” [http://www.institut-montparnasse.eu/nos-publications/les-inegalites-territoriales-et-sociales-2-12/].Google Scholar
Fourcade, Marion and Healy, Kieran, 2013. “Classification Situations: Life-Chances in the Neoliberal Era,” Accounting, Organizations and Society 38: 559572.CrossRefGoogle Scholar
Fourcade, Marion and Healy, Kieran, 2017. “Categories All the Way Down,” Historical Social Research, 42 (1): 286296.Google Scholar
Hacking, Ian, 1982. “Bio Power and the Avalanche of Numbers,” Humanities in Society, 5: 279295.Google Scholar
Hollinger, David A., 2006. “From Identity to Solidarity,” Daedalus, 135 (4): 2331.CrossRefGoogle Scholar
Hustead, Edwin C., 1988. “The History of Actuarial Mortality Tables in the United States,” Journal of Insurance Medicine, 20 (4): 1216.Google Scholar
Kilbourne, Frederick, 2014. “Contrasting the Dreams of the Founding Fathers,” in Bryan, C. F., ed., 100 Years of Expertise (Arlington Va., Casualty Actuarial Society: 3031).Google Scholar
Kitchin, Rob, 2014. “Big Data, New Epistemologies and Paradigm Shifts,” Big Data & Society, 1 (1) [2053951714528481. https://doi.org/10.1177/2053951714528481].CrossRefGoogle Scholar
LeCun, Yann, Bengio, Yoshua and Hinton, Geoffrey, 2015. “Deep Learning,” Nature, 521 (7553): 436444 [https://doi.org/10.1038/nature14539].CrossRefGoogle ScholarPubMed
Lehtonen, Turo-Kimmo and Liukko, Jyri, 2011. “The Forms and Limits of Insurance Solidarity,” Journal of Business Ethics, 103 (1): 3344 [https://doi.org/10.1007/s10551-012-1221-x].CrossRefGoogle Scholar
Lehtonen, Turo-Kimmo and Liukko, Jyri, 2015. “Producing Solidarity, Inequality and Exclusion Through Insurance,” Res Publica, 21 (2): 155169 [https://doi.org/10.1007/s11158-015-9270-5].CrossRefGoogle Scholar
Litman, Todd, 2005. “Pay-As-You-Drive Pricing and Insurance Regulatory Objectives,” Journal of Insurance Regulation, 23 (3): 2553.Google Scholar
Liukko, Jyri, 2010. “Genetic Discrimination, Insurance, and Solidarity: An Analysis of the Argumentation for Fair Risk Classification,” New Genetics and Society, 29 (4): 457475 [https://doi.org/10.1080/14636778.2010.528197].CrossRefGoogle Scholar
Lury, Celia and Day, Sophie, 2019. “Algorithmic Personalization as a Mode of Individuation,” Theory, Culture & Society, 36 (2): 1737 [https://doi.org/10.1177/0263276418818888].CrossRefGoogle Scholar
Mayer-Schönberger, Viktor and Cukier, Kenneth, 2013. Big Data: A Revolution That Will Transform How We Live, Work, and Think (London, Houghton Mifflin Harcourt).Google Scholar
McFall, Liz, 2019. “Personalizing Solidarity? The Role of Self-Tracking in Health Insurance Pricing,” Economy and Society, 48 (1): 5276 [https://doi.org/10.1080/03085147.2019.1570707].CrossRefGoogle ScholarPubMed
Meyers, Gert and Van Hoyweghen, Ine, 2018. “Enacting Actuarial Fairness in Insurance: From Fair Discrimination to Behaviour-Based Fairness,” Science as Culture, 27 (4): 413438 [https://doi.org/10.1080/09505431.2017.1398223].CrossRefGoogle Scholar
Miller, Michael J., 2009. “Disparate Impact and Unfairly Discriminatory Insurance Rates,” Casualty Actuarial Society E-Forum, Winter 2009 [https://www.casact.org/pubs/forum/09wforum/].Google Scholar
Moir, Henry and Strode Elston, James, 1919. Sources and Characteristics of the Principal Mortality Tables (New York, The Actuarial society of America) [http://archive.org/details/sourcesandchara00wolfgoog].Google Scholar
Moor, Liz and Lury, Celia, 2018. “Price and the Person: Markets, Discrimination, and Personhood,” Journal of Cultural Economy, 11 (6): 501513 [https://doi.org/10.1080/17530350.2018.1481878].CrossRefGoogle Scholar
Nelder, J. A. and Wedderburn, R. W. M., 1972. “Generalized Linear Models,” Journal of the Royal Statistical Society, Series A (General) , 135 (3): 370384 [https://doi.org/10.2307/2344614].CrossRefGoogle Scholar
Pasquale, Frank, 2015. The Black Box Society: The Secret Algorithms That Control Money and Information (Cambridge MA/London UK, Harvard University Press).CrossRefGoogle Scholar
Pentland, Alex, 2014. Social Physics: How Good Ideas Spread––the Lessons from a New Science (New York, The Penguin Press).Google Scholar
Porter, Theodore M., [1995] 1996. Trust in Numbers, (Princeton NJ, Princeton University Press).Google Scholar
Rawls, John, 2005. A Theory of Justice (Cambridge MA/London UK, Harvard University Press).Google Scholar
Rosanvallon, Pierre, 1995. La Nouvelle question sociale. Repenser l’État-providence (Paris, Points).Google Scholar
Rouvroy, Antoinette and Berns, Thomas, 2013. “Gouvernementalité algorithmique et perspectives d’émancipation,” Réseaux, 177 (1): 163196.CrossRefGoogle Scholar
Sciulli, David, 2007. “Professions before Professionalism,” European Journal of Sociology/Archives Européennes de Sociologie, 48 (1): 121–47 [https://doi.org/10.1017/S0003975607000318].CrossRefGoogle Scholar
Siegel, Eric, [2013] 2016. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die (Hoboken NJ, Wiley).Google Scholar
Society of Actuaries, n.d. “Historical Background” [https://www.soa.org/about/historical-background/, accessed August 6, 2019].Google Scholar
Thiery, Yves and Van Schoubroeck, Caroline, 2006. “Fairness and Equality in Insurance Classification,” The Geneva Papers on Risk and Insurance––Issues and Practice , 31 (2): 190211 [https://doi.org/10.1057/palgrave.gpp.2510078].CrossRefGoogle Scholar
Truesdell, Leon E., 1965. The Development of Punch Card Tabulation in the Bureau of the Census, 1890-1940: With Outlines of Actual Tabulation Programs (U.S. G.P.O.).Google Scholar
Tselentis, Dimitrios I., Yannis, George and Vlahogianni, Eleni I., 2017. “Innovative Motor Insurance Schemes: A Review of Current Practices and Emerging Challenges,” Accident Analysis & Prevention, 98 (January): 139148 [https://doi.org/10.1016/j.aap.2016.10.006].CrossRefGoogle ScholarPubMed
Turow, Joseph, 2012. The Daily You: How the New Advertising Industry Is Defining Your Identity and Your Worth (New Haven, Yale University Press).Google Scholar
Turow, Joseph and Draper, Nora, 2014. “Industry Conceptions of Audience in the Digital Space: A Research Agenda,” Cultural Studies, 28 (4): 643656.CrossRefGoogle Scholar
Verbelen, Roel, Antonio, Katrien and Claeskens, Gerda, 2018. “Unravelling the Predictive Power of Telematics Data in Car Insurance Pricing,” Journal of the Royal Statistical Society: Series C (Applied Statistics), 67 (5): 12751304 [https://doi.org/10.1111/rssc.12283].Google Scholar
Weidner, Wiltrud, Transchel, Fabian W. G. and Weidner, Robert, 2017. “Telematic Driving Profile Classification in Car Insurance Pricing,” Annals of Actuarial Science, 11 (02): 213236.CrossRefGoogle Scholar
Winlaw, Manda, Steiner, Stefan H., MacKay, R. Jock and Hilal, Allaa R., 2019. “Using Telematics Data to Find Risky Driver Behaviour,” Accident Analysis & Prevention, 131 (October): 131136 [https://doi.org/10.1016/j.aap.2019.06.003].CrossRefGoogle ScholarPubMed
Woodbury, Robert M., 1925. “Review of Review of Workmen’s Compensation, by E. H. Downey”, The American Economic Review, 15 (1): 155157.Google Scholar
Zelizer, Viviana, 1979. Morals and Markets: The Development of Life Insurance in the United States (New York, Columbia University Press).CrossRefGoogle Scholar