Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T10:17:13.419Z Has data issue: false hasContentIssue false

Language, Perception and Action. How Words are Grounded in the Brain

Published online by Cambridge University Press:  01 October 2008

Marc Jeannerod*
Affiliation:
Institut des Sciences Cognitives, UMR 5230 CNRS/Université Claude Bernard, 67 Boulevard Pinel, 69675, Bron Cedex, France

Abstract

Language processing is grounded in brain function. Words of different semantic categories are processed in different cortical areas. Several examples of this distributed processing are given: colour words are processed in visual areas, whereas action words are processed in motor areas. The processing of action words in described in more details. A pathological condition, Parkinson’s disease, is used as an illustration of a motor impairment that selectively affects the comprehension of action words. This comprehension impairment is attributed to a difficulty in accessing the procedural knowledge carried by this specific class of words.

Type
Focus: The Origin of Language
Copyright
Copyright © Academia Europaea 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Freud, S. (1891) Zur Auffassung der Aphasien. Eine kritische Studie (Leipzig und Wien: Frantz Deuticke).Google Scholar
2.Meyer, D. E. and Schwaneveldt, R. W. (1976) Meaning, memory structure and mental processes. Science, 192, 27633.CrossRefGoogle ScholarPubMed
3.Warrington, E. K. and Shallice, T. (1984) Category specific semantic impairments. Brain, 107, 829853.CrossRefGoogle ScholarPubMed
4.Goldberg, R. F., Perfetti, C. A. and Schneider, W. (2006) Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 49174921.CrossRefGoogle ScholarPubMed
5.Hauk, O., Johnsrude, I. and Pulvermüller, F. (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301307.CrossRefGoogle ScholarPubMed
6.Milner, B., Corkin, S. and Teuber, H. L. (1968) Further analysis of the hippocampal amnesic syndrome: 14-years follow-up of HM. Neuropsychologia, 6, 215234.CrossRefGoogle Scholar
7.Frak, V. G., Paulignan, Y. and Jeannerod, M. (2001) Orientation of the opposition axis in mentally simulated grasping. Experimental Brain Research, 136, 120127.CrossRefGoogle ScholarPubMed
8.Ehrsson, H., Geyer, S. and Naito, E. (2003) Imagery of voluntary movements of fingers, toes and tongue activates corresponding body-part specific motor representations. Journal of Neurophysiology, 90, 33043316.CrossRefGoogle ScholarPubMed
9.Rizzolatti, G., Fadiga, L., Gallese, V. and Fogassi, L. (1996) Premotor cortex and the recognition of motor action. Cognitive Brain Research, 3, 131141.CrossRefGoogle Scholar
10.Rizzolatti, G. and Fabbri-Destro, M. (2007) Understanding actions and the intentions of others: the basic neural mechanism. European Review, 15, 209222.CrossRefGoogle Scholar
11.Martin, A., Wiggs, C. L., Ungerleider, L. G. and Haxby, J. V. (1996) Neural correlates of category-specific knowledge. Nature, 379, 649652.CrossRefGoogle ScholarPubMed
12.Chao, L. L. and Martin, A. (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12, 478494.CrossRefGoogle ScholarPubMed
13.Fadiga, L., Craighero, L., Buccino, G. and Rizzolatti, G. (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. European Journal of Neuroscience, 15, 399402.CrossRefGoogle ScholarPubMed
14.Kerzel, D. and Bekkering, H. (2000) Motor activation from visible speech: evidence from stimulus-response compatibility. Journal of Experimental Psychology. Human Perception and Performance, 26, 634647.CrossRefGoogle ScholarPubMed
15.Schubotz, R. J. and von Cramon, Y. (2004) Sequences of abstract non-biological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 54675474.CrossRefGoogle Scholar
16.Grafton, S. T., Arbib, M. A., Fadiga, L. and Rizzolatti, G. (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103111.CrossRefGoogle ScholarPubMed
17.Perani, D., Cappa, S., Bettinardi, V., Bressi, S., Gorno-Tempini, M., Matarrese, M. and Fazio, F. (1995) Different neural systems for the recognition of animals and man-made tools. NeuroReport, 6, 16371641.CrossRefGoogle ScholarPubMed
18.Tettamenti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., Fazio, F., Rizzolatti, G., Cappa, S. F. and Perani, D. (2005) Listening to action related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17, 273281.CrossRefGoogle Scholar
19.Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M. and Nazir, T. A. (2008) Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46, 743756.CrossRefGoogle Scholar
20.Dominey, P. F. and Jeannerod, M. (1997) Contribution of frontostriatal function to sequence learning in Parkinson’s disease. Evidence for dissociable systems. NeuroReport, 8, 39.CrossRefGoogle ScholarPubMed