We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/ermm/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Since the outbreak of coronavirus disease 2019 (COVID-19) in late 2019, it has evolved into a global pandemic that has become a substantial public health concern. COVID-19 is still causing a large number of deaths in several countries around the world because of the lack of effective treatment.
Aim
To systematically compare the outcomes of COVID-19 patients treated with integrated Chinese with western (ICW) medicine versus western medicine (WM) alone by pooling the data of published literature, and to determine if ICW treatment of COVID-19 patients has better clinical outcomes.
Methods
We searched PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), China Clinical Trial Registry, Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI) and Wanfang databases using keywords related to COVID-19, traditional Chinese medicine (TCM) and treatment effect. The search deadline was until 10 February 2021. All randomised controlled (RC) and non-randomised controlled (NRC) clinical trials of the ICW or WM treatment of COVID-19 patients were included. We analysed the effective rate, cure rate, exacerbation rate, turning negative rate of viral nucleic acid, remission rate and remission time of symptoms such as fever, cough, feebleness and chest computed tomography (CT) and the number of white blood cells (WBCs) and lymphocytes (LYM) of the COVID-19 patients. For qualitative and quantitative data, the ratio risk (RR) and weighted mean difference (WMD) were used as the indexes of the statistical analysis, respectively. RevMan 5.4 was used to perform meta-analyses and forest plots with the fixed-effects and random-effects models. Cochrane risk of bias tool (RoB 2.0) was used to assess the risk of bias in the included RC trials, whereas risk of bias in non-randomised studies of interventions was used to assess the risk of bias in NRC trials.
Results
This research includes 16 studies with 1645 valid confirmed COVID-19 patients, among which 895 patients of the experimental group received ICW treatment whereas 750 patients of the control group received WM treatment. The outcomes were assessed in three aspects, that is, overall indicator, symptoms indicator and blood indicator, respectively, and the results showed that the ICW group had better treatment outcomes compared with the WM. Among the overall indicators, the ICW group displayed a higher effective rate (RR = 1.24, 95% confidence interval (CI): 1.16–1.33), clinical cure rate (RR = 1.27, 95% CI: 1.03–1.56) and lower exacerbation rate (RR = 0.36, 95% CI: 0.25–0.52), but no statistical difference was observed in the turning negative rate of viral nucleic acid (RR = 1.20, 95% CI: 0.78–1.85). Among the symptom indicators, the ICW group had a higher fever remission rate (RR = 1.24, 95% CI: 1.09–1.42), less fever remission time (WMD = −1.49, 95% CI: −1.85 to −1.12), a higher cough remission rate (RR = 1.38, 95% CI: 1.10–1.73) and a feebleness remission rate (RR = 1.45, 95% CI: 1.18–1.77), less cough remission time (WMD = −1.61, 95% CI: −2.35 to −0.87) and feebleness remission time (WMD = −1.50, 95% CI: −2.38 to −0.61) and better improvement in chest CT (RR = 1.19, 95% CI: 1.11–1.28). For blood indicator, the number of WBCs in the blood of patients of ICW group rebounded significantly (WMD = 0.35, 95% CI: 0.16–0.54), and the recovery of LYM in the blood was more obvious (WMD = 0.23, 95% CI: 0.06–0.40).
Conclusion
The results of this study show that the outcomes in COVID-19 patients treated by the ICW is better than those treated by the WM treatment alone, suggesting that WM and TCM can be complementary in the treatment of COVID-19.
Recent epidemiological studies analysing sex-disaggregated patient data of coronavirus disease 2019 (COVID-19) across the world revealed a distinct sex bias in the disease morbidity as well as the mortality – both being higher for the men. Similar antecedents have been known for the previous viral infections, including from coronaviruses, such as severe acute respiratory syndrome (SARS) and middle-east respiratory syndrome (MERS). A sound understanding of molecular mechanisms leading to the biological sex bias in the survival outcomes of the patients in relation to COVID-19 will act as an essential requisite for developing a sex-differentiated approach for therapeutic management of this disease. Recent studies which have explored molecular mechanism(s) behind sex-based differences in COVID-19 pathogenesis are scarce; however, existing evidence, for other respiratory viral infections, viz. SARS, MERS and influenza, provides important clues in this regard. In attempt to consolidate the available knowledge on this issue, we conducted a systematic review of the existing empirical knowledge and recent experimental studies following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The qualitative analysis of the collected data unravelled multiple molecular mechanisms, such as evolutionary and genetic/epigenetic factors, sex-linkage of viral host cell entry receptor and immune response genes, sex hormone and gut microbiome-mediated immune-modulation, as the possible key reasons for the sex-based differences in patient outcomes in COVID-19.
Coronavirus disease 2019 (COVID-19) is associated with autoimmunity and systemic inflammation. Patients with autoimmune rheumatic and musculoskeletal disease (RMD) may be at high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this review, based on evidence from the literature, as well as international scientific recommendations, we review the relationships between COVID-19, autoimmunity and patients with autoimmune RMDs, as well as the basics of a multisystemic inflammatory syndrome associated with COVID-19. We discuss the repurposing of pharmaceutics used to treat RMDs, the principles for the treatment of patients with autoimmune RMDs during the pandemic and the main aspects of vaccination against SARS-CoV-2 in autoimmune RMD patients.
Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly affected global economy and daily life and changed our attitudes towards life. The reproductive system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more vulnerable to viral infection compared with males. Therefore, female fertility and associated reproductive health care in the COVID-19 era need more attention. This review summarises the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might affect female fertility and interfere with assisted reproductive technology procedures. The side effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination needs more attention because of the uncertainty of COVID-19.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 is sweeping the world, threatening millions of lives and drastically altering our ways of living. According to current studies, failure to either activate or eliminate inflammatory responses timely and properly at certain stages could result in the progression of the disease. In other words, robust immune responses to coronavirus disease 2019 (COVID-19) are critical. However, they do not theoretically present in some special groups of people, including the young, the aged, patients with autoimmunity or cancer. Differences also do occur between men and women. Our immune system evolves to ensure delicate coordination at different stages of life. The innate immune cells mainly consisted of myeloid lineage cells, including neutrophils, basophils, eosinophils, dendritic cells and mast cells; they possess phagocytic capacity to different degrees at different stages of life. They are firstly recruited upon infection and may activate the adaptive immunity when needed. The adaptive immune cells, on the other way, are comprised mainly of lymphoid lineages. As one grows up, the adaptive immunity matures and expands its memory repertoire, accompanied by an adjustment in quantity and quality. In this review, we would summarise and analyse the immunological characteristics of these groups from the perspective of the immune system ‘evolution’ as well as ‘revolution’ that has been studied and speculated so far, which would aid the comprehensive understanding of COVID-19 and personalised-treatment strategy.
The current COVID-19 pandemic contributed by the SARS-CoV-2 has put in place an urgent need for new and promising antiviral therapeutics. The viral RNA-dependent RNA polymerase (RdRp) enzyme plays a vital role in viral replication for all RNA viruses, including SARS-CoV-2, thereby making it a prime and promising candidate for novel antiviral targeting. Interestingly, the human telomerase reverse transcriptase (hTERT), a common catalytic subunit of the telomerase enzyme in many cancers, has also been identified with structural and functional similarities to the viral RdRp. Therefore, it becomes essential to evaluate and consider anticancer drugs that target hTERT towards antiviral RdRp activity, and vice versa. For instance, Floxuridine, an hTERT inhibitor, and VX-222, a hepatitis C virus RdRp inhibitor, are now gaining recognition as a potential antiviral against SARS-CoV-2 and anti-hTERT for cancer, simultaneously. While limited studies on hTERT inhibitors for use as viral RdRp, and anti-RdRp inhibitors as hTERT inhibitors are available, in this review, we aim at bringing to light this close structural and functional relationship between both these enzymes. We punctuate this idea with specific examples on how potential anticancer inhibitors can effectively be brought to use as inhibitors against the SARS-CoV-2 virus, a relatively new pathogen, compared to the very well-studied field of cancer research.
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and significantly impacts the world economy and daily life. Symptoms of COVID-19 range from asymptomatic to fever, dyspnoea, acute respiratory distress and multiple organ failure. Critical cases often occur in the elderly and patients with pre-existing conditions. By binding to the angiotensin-converting enzyme 2 receptor, SARS-CoV-2 can enter and replicate in the host cell, exerting a cytotoxic effect and causing local and systemic inflammation. Currently, there is no specific treatment for COVID-19, and immunotherapy has consistently attracted attention because of its essential role in boosting host immunity to the virus and reducing overwhelming inflammation. In this review, we summarise the immunopathogenic features of COVID-19 and highlight recent advances in immunotherapy to illuminate ideas for the development of new potential therapies.