Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:34:01.569Z Has data issue: false hasContentIssue false

Biochemical factors contributing to tomato fruit sugar content:a review

Published online by Cambridge University Press:  22 December 2011

Diane M. Beckles
Affiliation:
Dep. Plant Sci., Univ. Calif., One Shields Ave., Davis, CA 95616, USA. dmbeckles@ucdavis.edu ,
Nyan Hong
Affiliation:
Dep. Plant Sci., Univ. Calif., One Shields Ave., Davis, CA 95616, USA. dmbeckles@ucdavis.edu ,
Liliana Stamova
Affiliation:
1632 Santa Rosa St., Davis, CA 95616, USA
Kietsuda Luengwilai
Affiliation:
Dep. Plant Sci., Univ. Calif., One Shields Ave., Davis, CA 95616, USA. dmbeckles@ucdavis.edu , Current address: Dep. Hortic., Fac. Agric. Kamphaeng Saen, Kasetsart Univ., Kamphaeng Saen Campus Kamphaeng Saen Nakhon Pathom, 73140, Thailand

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction. Consumers and processors value tomatoes with high fruit sugarcontent; however, most breeding and cultural practices negatively impact this trait. Wildtomato species can accumulate two- to three-fold more fruit sugar than cultivars and areproving to be valuable both as a source of high-sugar loci to broaden thegenetic base of currently produced cultivars, and as research material to understand thistrait. Synthesis. While cutting-edge genomic approaches have taught us muchabout fruit phenotypes, it is still important to assess fruit enzyme activities andmetabolic fluxes in lines with contrasting fruit sugar accumulation. These metabolicfunctions are closest to the ripe fruit sugar trait. In this review, we focus ourattention on the biochemical pathways, especially starch biosynthesis, that may influencetomato fruit sugars. We try where possible to put this information into a physiologicalcontext because together they influence yield. We compare and contrast sugar metabolism incultivars and wild tomato species and identify factors that may influence differences intheir fruit size. Conclusion. Although difficult, we show that it is possibleto develop fruit with high horticultural yield and use the breeding line ‘Solara’ as anexample. In addition, we suggest avenues of further investigation to understand theregulation and control of fruit carbohydrate content.

Type
Review
Copyright
© 2012 Cirad/EDP Sciences

References

Giovannucci, E., A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer, Exp. Biol. Med. 227 (2002) 852859. CrossRefGoogle ScholarPubMed
Giovannucci, E., Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature, Pure Appl. Chem. 74 (2002) 14271434. CrossRefGoogle Scholar
Giovannucci, E., Rimm, E.B., Liu, Y., Stampfer, M.J., Willett, W.C., A, prospective study of tomato products, lycopene, and prostate cancer risk, J. Natl. Cancer Inst. 94 (2002) 391398. CrossRefGoogle ScholarPubMed
Arab, L., Steck, S., Lycopene and cardiovascular disease, Am. J. Clin. Nutr. 71 (2000) 16911695. Google ScholarPubMed
Sesso, H.D., Liu, S.M., Gaziano, J.M., Buring, J.E., Dietary lycopene, tomato-based food products and cardiovascular disease in women, J. Nutr. 133 (2003) 23362341. Google ScholarPubMed
Boffetta, P., Couto, E., Wichmann, J., Ferrari, P., Trichopoulos, D., Bueno-de-Mesquita, H.B., van Duijnhoven, F.J.B., Buchner, F.L., Key, T., Boeing, H., Nothlings, U., Linseisen, J., Gonzalez, C.A., Overvad, K., Nielsen, M.R.S., Tjonneland, A., Olsen, A., Clavel-Chapelon, F., Boutron-Ruault, M.C., Morois, S., Lagiou, P., Naska, A., Benetou, V., Kaaks, R., Rohrmann, S., Panico, S., Sieri, S., Vineis, P., Palli, D., van Gils, C.H., Peeters, P.H., Lund, E., Brustad, M., Engeset, D., Huerta, J.M., Rodriguez, L., Sanchez, M.J., Dorronsoro, M., Barricarte, A., Hallmans, G., Johansson, I., Manjer, J., Sonestedt, E., Allen, N.E., Bingham, S., Khaw, K.T., Slimani, N., Jenab, M., Mouw, T., Norat, T., Riboli, E., Trichopoulou, A., Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC), J. Natl. Cancer Inst. 102 (2010) 529537. CrossRefGoogle Scholar
Jordan, J., The Heirloom tomato as cultural object: investigating taste and space, Sociol. Rural. 47 (2007) 2041. CrossRefGoogle Scholar
Beckles, D.M., Factors affecting the postharvest sugars and total soluble solids in tomato (Solanum lycopersicum L.) fruits, Postharvest Biol. Technol. 63 (2012) 129140. CrossRefGoogle Scholar
Stevens M.A., Inheritance of tomato quality components, in: J.J. (Ed.), Plant breeding reviews, AVI Publ. Co., Westport, Connecticut, U.S.A., 1986.
Baldet, P., Hernould, M., Laporte, F., Mounet, F., Just, D., Mouras, A., Chevalier, C., Rothan, C., The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants, J. Exp. Bot. 57 (2006) 961970. CrossRefGoogle Scholar
Ho L.C., Hewitt J.D., Fruit development, Chapman and Hall, N.Y., U.S.A., 1986.
Mounet, F., Moing, A., Garcia, V., Petit, J., Maucourt, M., Deborde, C., Bernillon, S., Le Gall, G., Colquhoun, I., Defernez, M., Giraudel, J.L., Rolin, D., Rothan, C., Lemaire-Chamley, M., Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development, Plant Physiol. 149 (2009) 15051528. CrossRefGoogle ScholarPubMed
Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., Latche, A., Pech, J.C., Fernie, A.R., Bouzayen, M., Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling, Plant Cell 21 (2009) 14281452. CrossRefGoogle ScholarPubMed
Gillaspy, G., Bendavid, H., Gruissem, W., Fruits – a developmental perspective, Plant Cell 5 (1993) 14391451. CrossRefGoogle ScholarPubMed
Bohner, J., Bangerth, F., Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in size, Physiol. Plant. 72 (1988) 316320. CrossRefGoogle Scholar
Bertin, N., Lecomte, A., Brunel, B., Fishman, S., Genard, M., A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation, J. Exp. Bot. 58 (2007) 19031913. CrossRefGoogle ScholarPubMed
Klann, E.M., Hall, B., Bennett, A.B., Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit, Plant Physiol. 112 (1996) 13211330. CrossRefGoogle ScholarPubMed
Carrari, F., Fernie, A.R., Metabolic regulation underlying tomato fruit development, J. Exp. Bot. 57 (2006) 18831897. CrossRefGoogle ScholarPubMed
Cheniclet, C., Rong, W.Y., Causse, M., Frangne, N., Bolling, L., Carde, J.-P., Renaudin, J.-P., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol. 139 (2005) 19841994. CrossRefGoogle ScholarPubMed
Chevalier, C., Nafati, M., Mathieu-Rivet, E., Bourdon, M., Frangne, N., Cheniclet, C., Renaudin, J.P., Gevaudant, F., Hernould, M., Elucidating the functional role of endoreduplication in tomato fruit development, Ann. Bot. 107 (2011) 11591169. CrossRefGoogle Scholar
Prudent, M., Causse, M., Genard, M., Tripodi, P., Grandillo, S., Bertin, N., Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection, J. Exp. Bot. 60 (2009) 923937. CrossRefGoogle Scholar
Menu, T., Saglio, P., Granot, D., Dai, N., Raymond, P., Ricard, B., High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size, Plant Cell Environ. 27 (2004) 8998. CrossRefGoogle Scholar
Odanaka, S., Bennett, A.B., Kanayama, Y., Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato, Plant Physiol. 129 (2002) 11191126. CrossRefGoogle ScholarPubMed
Ohyama, A., Ito, H., Sato, T., Nishimura, S., Imai, T., Hirai, M., Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit, Plant Cell Physiol. 36 (1995) 369376. CrossRefGoogle Scholar
Zanor, M.I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., Kuhn, C., Bleiss, W., Giavalisco, P., Willmitzer, L., Sulpice, R., Zhou, Y.H., Fernie, A.R., RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility, Plant Physiol. 150 (2009) 12041218. CrossRefGoogle Scholar
Nesbitt, T.C., Tanksley, S.D., fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution, Plant Physiol. 127 (2001) 575583. CrossRefGoogle Scholar
Nguyen-Quoc, B., Foyer, C.H., A role for ’futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit, J. Exp. Bot. 52 (2001) 881889. CrossRefGoogle Scholar
Steinhauser, M.C., Steinhauser, D., Koehl, K., Carrari, F., Gibon, Y., Fernie, A.R., Stitt, M., Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii, Plant Physiol. 153 (2010) 8098. CrossRefGoogle ScholarPubMed
Yamaki, S., Metabolism and accumulation of sugars translocated to fruit and their regulation, J. Jpn. Soc. Hortic. Sci. 79 (2010) 115. CrossRefGoogle Scholar
Luengwilai, K., Beckles, D.M., Starch granules in tomato fruit show a complex pattern of degradation, J. Agric. Food Chem. 57 (2009) 84808487. CrossRefGoogle ScholarPubMed
Wang, F., Sanz, A., Brenner, M.L., Smith, A., Sucrose synthase, starch accumulation, and tomato fruit sink strength, Plant Physiol. 101 (1993) 321327. CrossRefGoogle ScholarPubMed
Bungerkibler, S., Bangerth, F., Relationship between cell number, cell-size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant-growth regulators, Plant Growth Regul. 1 (1983) 143154. Google Scholar
Petreikov, M., Yeselson, L., Shen, S., Levin, I., Schaffer, A.A., Efrati, A., Bar, M., Carbohydrate balance and accumulation during development of near-isogenic tomato lines differing in the AGPase-L1 allele, J. Am. Soc. Hortic. Sci. 134 (2009) 134140. Google Scholar
Guan, H.P., Janes, H.W., Light regulation of sink metabolism in tomato fruit .1. Growth and sugar accumulation, Plant Physiol. 96 (1991) 916921. CrossRefGoogle Scholar
Yelle, S., Hewitt, J.D., Robinson, N.L., Damon, S., Bennett, A.B., Sink metabolism in tomato fruit. 3. Analysis of carbohydrate assimilation in a wild-species, Plant Physiol. 87 (1988) 737740. CrossRefGoogle Scholar
Obiadalla-Ali, H., Fernie, A.R., Lytovchenko, A., Kossmann, J., Lloyd, J.R., Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism, Planta 219 (2004) 533540. CrossRefGoogle ScholarPubMed
N’tchobo, H., Dali, N., Nguyen-Quoc, B., Foyer, C.H., Yelle, S., Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity, J. Exp. Bot. 50 (1999) 14571463. CrossRefGoogle Scholar
Robinson, N.L., Hewitt, J.D., Bennett, A.B., Sink metabolism in tomato fruit. 1. Developmental-changes in carbohydrate metabolizing enzymes, Plant Physiol. 87 (1988) 727730. CrossRefGoogle Scholar
Beckles D.M., The subcellular location of ADPglucose pyrophosphorylase in starch-storing cells, Univ. Camb., Camb., U.K., 1998, 168 p.
Cong, B., Barrero, L.S., Tanksley, S.D., Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, Nat. Genet. 40 (2008) 800804. CrossRefGoogle ScholarPubMed
Knapp, S., Bohs, L., Nee, M., Spooner, D.M., Solanaceae – a model for linking genomics with biodiversity, Comp. Funct. Genomics 5 (2004) 285291. CrossRefGoogle ScholarPubMed
Agong, S.G., Schittenhelm, S., Friedt, W., Assessment of tolerance to salt stress in Kenyan tomato germplasm, Euphytica 95 (1997) 5766. CrossRefGoogle Scholar
Turhan, A., Seniz, V., Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in Turkey, Afr. J. Agric. Res. 4 (2009) 10861092. Google Scholar
Turhan, A., Seniz, V., Kuscu, H., Genotypic variation in the response of tomato to salinity, Afr. J. Biotechnol. 8 (2009) 10621068. Google Scholar
Balibrea, M.E., Martinez-Andujar, C., Cuartero, J., Bolarin, M.C., Perez-Alfocea, F., The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism, Funct. Plant Biol. 33 (2006) 279288. CrossRefGoogle Scholar
Yelle, S., Chetelat, R.T., Dorais, M., Deverna, J.W., Bennett, A.B., Sink metabolism in tomato fruit. 4. Genetic and biochemical-analysis of sucrose accumulation, Plant Physiol. 95 (1991) 10261035. CrossRefGoogle ScholarPubMed
Baxter, C.J., Carrari, F., Bauke, A., Overy, S., Hill, S.A., Quick, P.W., Fernie, A.R., Sweetlove, L.J., Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids, Plant Cell Physiol. 46 (2005) 425437. CrossRefGoogle Scholar
Miron, D., Schaffer, A.A., Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl., Plant Physiol 95 (1991) 623627. CrossRefGoogle Scholar
Stommel, J.R., Enzymatic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum, Plant Physiol. 99 (1992) 324328. CrossRefGoogle Scholar
Fridman, E., Carrari, F., Liu, Y.S., Fernie, A.R., Zamir, D., Zooming in on a quantitative trait for tomato yield using interspecific introgressions, Science 305 (2004) 17861789. CrossRefGoogle Scholar
Klann, E.M., Chetelat, R.T., Bennett, A.B., Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit, Plant Physiol. 103 (1993) 863870. CrossRefGoogle ScholarPubMed
Husain, S.E., James, C., Shields, R., Foyer, C.H., Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium, New Phytol. 150 (2001) 6572. CrossRefGoogle Scholar
Husain, S.E., Thomas, B.J., Kingston-Smith, A.H., Foyer, C.H., Invertase protein, but not activity, is present throughout development of Lycopersicon esculentum and L. pimpinellifolium fruit, New Phytol. 150 (2001) 7381. CrossRefGoogle Scholar
Levin, I., Gilboa, N., Cincarevsky, F., Oguz, I., Petreikov, M., Yeselson, Y., Shen, S., Bar, M., Schaffer, A.A., Epistatic interaction between two unlinked loci derived from introgressions from Lycopersicon hirsutum further modulates the fructose-to-glucose ratio in the mature tomato fruit, Israel J. Plant Sci. 54 (2006) 215222. CrossRefGoogle Scholar
Levin, I., Gilboa, N., Yeselson, E., Shen, S., Schaffer, A.A., Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits, Theor. Appl. Genet. 100 (2000) 256262. CrossRefGoogle Scholar
Schauer, N., Zamir, D., Fernie, A.R., Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex, J. Exp. Bot. 56 (2005) 297307. CrossRefGoogle ScholarPubMed
Schaffer, A.A., Levin, I., Oguz, I., Petreikov, M., Cincarevsky, F., Yeselson, Y., Shen, S., Gilboa, N., Bar, M., ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit, Plant Sci. 152 (2000) 135144. CrossRefGoogle Scholar
Kortsee, A.J., Appeldoorn, N.J.G., Oortwijn, M.E.P., Visser, R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929939. CrossRefGoogle Scholar
Petreikov, M., Shen, S., Yeselson, Y., Levin, I., Bar, M., Schaffer, A.A., Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit, Planta 224 (2006) 14651479. CrossRefGoogle ScholarPubMed
Bertin, N., Causse, M., Brunel, B., Tricon, D., Genard, M., Identification of growth processes involved in QTLs for tomato fruit size and composition, J. Exp. Bot. 60 (2009) 237248. CrossRefGoogle Scholar
Weber, H., Heim, U., Golombek, S., Borisjuk, L., Wobus, U., Assimilate uptake and the regulation of seed development, Seed Sci. Res. 8 (1998) 331345. CrossRefGoogle Scholar
Weber, H., Borisjuk, L., Wobus, U., Sugar import and metabolism during seed development, Trends Plant Sci. 2 (1997) 169174. CrossRefGoogle Scholar
Ohto, M., Fischer, R.L., Goldberg, R.B., Nakamura, K., Harada, J.J., Control of seed mass by APETALA2, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 31233128. CrossRefGoogle ScholarPubMed
Yousef, G.G., Juvik, J.A., Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids, Theor. Appl. Genet. 103 (2001) 10221027. CrossRefGoogle Scholar
Eshed, Y., Zamir, D., An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL, Genetics 141 (1995) 1147. Google Scholar
Krieger, U., Lippman, Z.B., Zamir, D., The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato, Nat. Genet. 42 (2010) 459463. CrossRefGoogle Scholar
Luengwilai, K., Fiehn, O.E., Beckles, D.M., Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids, J. Agric. Food Chem. 58 (2010) 1179011800. CrossRefGoogle ScholarPubMed
Galiana-Balaguer, L., Rosello, S., Nuez, F., Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality, Genet. Res. Crop Evol. 53 (2006) 907923. CrossRefGoogle Scholar
Rick, C.M., High soluble solids content in large-fruited tomato lines derived from a wild green-fruited-species, Hilgardia 42 (1974) 493510. CrossRefGoogle Scholar
Stevens, M.A., Kader, A.A., Albrightholton, M., Algazi, M., Genotypic variation for flavor and composition in fresh market tomatoes, J. Am. Soc. Hortic. Sci. 102 (1977) 680689. Google Scholar
Grierson D., Kader A.A., Fruit ripening and quality, Chapman and Hall, Lond., U.K., 1986.
Nookaraju, A., Upadhyaya, C.P., Pandey, S.K., Young, K.E., Hong, S.J., Park, S.K., Park, S.W., Molecular approaches for enhancing sweetness in fruits and vegetables, Sci. Hortic. 127 (2010) 115. CrossRefGoogle Scholar
Stitt, M., Sulpice, R., Keurentjes, J., Metabolic networks: How to identify key components in the regulation of metabolism and growth, Plant Physiol. 152 (2010) 428444. CrossRefGoogle Scholar
Fernie, A.R., Geigenberger, P., Stitt, M., Flux an important, but neglected, component of functional genomics, Curr. Opin. Plant Biol. 8 (2005) 174182. CrossRefGoogle ScholarPubMed
Stitt M., The first will be last and the last will be first: non-regulated enzymes call the tune, BIOS Sci. Publ. Ltd., Oxf., U.K., 1999.
Barratt, D.H.P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., Smith, A.M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 1312413129. CrossRefGoogle Scholar
Weber, A.P.M., Solute transporters as connecting elements between cytosol and plastid stroma, Curr. Opin. Plant Biol. 7 (2004) 247253. CrossRefGoogle ScholarPubMed
Lecourieux, F., Lecourieux, D., Vignault, C., Delrot, S., A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells, Plant Physiol. 152 (2010) 10961106. CrossRefGoogle ScholarPubMed
Farre, E.M., Fernie, A.R., Willmitzer, L., Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism, Metabolomics 4 (2008) 161170. CrossRefGoogle ScholarPubMed
Schaffer, A.A., Petreikov, M., Inhibition of fructokinase and sucrose synthase by cytosolic levels of fructose in young tomato fruit undergoing transient starch synthesis, Physiol. Plant. 101 (1997) 800806. CrossRefGoogle Scholar
Roitsch, T., Gonzalez, M.C., Function and regulation of plant invertases: sweet sensations, Trends Plant Sci. 9 (2004) 606613. CrossRefGoogle ScholarPubMed
Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., Boyer, J.S., Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat, Mol. Plant 3 (2010) 942955. CrossRefGoogle ScholarPubMed
Halford, N.G., Purcell, P.C., Hardie, D.G., Is hexokinase really a sugar sensor in plants?, Trends Plant Sci. 4 (1999) 117120. CrossRefGoogle Scholar
Rolland, F., Baena-Gonzalez, E., Sheen, J., Sugar sensing and signalling in plants: Conserved and novel mechanisms, Annu. Rev. Plant Biol. 57 (2006) 675709. CrossRefGoogle Scholar
Dai, N., Schaffer, A., Petreikov, M., Shahak, Y., Giller, Y., Ratner, K., Levine, A., Granot, D., Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence, Plant Cell 11 (1999) 12531266. CrossRefGoogle ScholarPubMed
Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., Fernie, A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development, Plant Physiol. 133 (2003) 8499. CrossRefGoogle ScholarPubMed
Smith, A.M., Prospects for increasing starch and sucrose yields for bioethanol production, Plant J. 54 (2008) 546558. CrossRefGoogle ScholarPubMed
Kortstee, A.J., Appeldoorn, N.J.G., Oortwijn, M.E.P., Visser, R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929939. CrossRefGoogle ScholarPubMed
Luengwilai, K., Tananuwong, K., Shoemaker, C.F., Beckles, D.M., Starch molecular structure shows little association with fruit physiology and starch metabolism in tomato, J. Agric. Food Chem. 58 (2010) 12751282. CrossRefGoogle Scholar
Stark, D.M., Timmerman, K.P., Barry, G.F., Preiss, J., Kishore, G.M., Regulation of the amount of starch in plant-tissues by Adp glucose pyrophosphorylase, Science 258 (1992) 287292. CrossRefGoogle Scholar
Obiadalla-Ali H., Understanding of carbon partitioning in tomato fruit, Max-Planck Inst. Mol. Plant Physiol., Golm, Ger., 2003.
Gao, Z.F., Sagi, M., Lips, S.H., Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity, Plant Sci. 135 (1998) 149159. CrossRefGoogle Scholar
Yin, Y.G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., Sugaya, S., Matsukura, C., Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner, J. Exp. Bot. 61 (2010) 563574. CrossRefGoogle Scholar
Centeno, D.C., Osorioa, S., Nunes-Nesi, A., Bertolo, A.L.F., Carneiro, R.T., Araújo, W.L., Steinhauser, M.-C., Michalska, J., Rohrmann, J., Geigenberger, P., Olivera, S.N., Stitt, M., Carrari, F., Rose, J.K.C., Fernie, A.R., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell 23 (2011) 162184. CrossRefGoogle Scholar
Anon., United States standards for grades of fresh tomatoes, USDA, Wash. DC, U.S.A., 1991.
Chetelat, R.T., Deverna, J.W., Bennett, A.B., Effects of the Lycopersicon chmielewskii sucrose accumulator gene (Sucr) on fruit yield and quality parameters following introgression into tomato, Theor. Appl. Genet. 91 (1995) 334339. Google ScholarPubMed
Levin, I., Lalazar, A., Bar, M., Schaffer, A.A., Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit, Ind. Crop. Prod. 20 (2004) 2936. CrossRefGoogle Scholar
Clarke M., Carbohydrates, industrial, Wiley-VCH, N.Y., U.S.A., 1995.
Luengwilai, K., Sukjamsai, K., Kader, A.A., Responses of ’Clemenules Clementine’ and ’W. Murcott’ mandarins to low oxygen atmospheres, Postharvest Biol. Technol. 44 (2007) 4854. CrossRefGoogle Scholar
Luengwilai, K., Beckles, D.M., Climacteric ethylene is not required for initiating chilling injury in tomato (Solanum lycopersicum L.), J. Stored Prod. Postharvest Res. 1 (2010) 1.
D’Aoust, M.A., Yelle, S., Nguyen-Quoc, B., Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit, Plant Cell 11 (1999) 24072418. CrossRefGoogle ScholarPubMed
Chengappa, S., Guilleroux, M., Phillips, W., Shields, R., Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit, Plant Mol. Biol. 40 (1999) 213221. CrossRefGoogle ScholarPubMed
Amemiya, T., Kanayama, Y., Yamaki, S., Yamada, K., Shiratake, K., Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation, Planta 223 (2006) 12721280. CrossRefGoogle ScholarPubMed
Goren, S., Huber, S.C., Granot, D., Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation, Planta 223 (2011) 10111023. CrossRefGoogle Scholar
Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., Nikiforova, V., Centeno, D., Ratzka, A., Pauly, M., Sweetlove, L.J., Fernie, A.R., Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior, Plant Physiol. 142 (2006) 13801396. CrossRefGoogle Scholar
Schaffer, A.A., Petreikov, M., Sucrose to starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiol. 113 (1997) 739746. CrossRefGoogle ScholarPubMed