Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T11:34:32.969Z Has data issue: false hasContentIssue false

AN EXTENSION OF A RESULT OF ERDŐS AND ZAREMBA

Published online by Cambridge University Press:  13 May 2020

MICHEL JEAN GEORGES WEBER*
Affiliation:
IRMA, UMR 7501, 10 rue du Général Zimmer, 67084 Strasbourg Cedex, France, e-mail: michel.weber@math.unistra.fr

Abstract

Erdös and Zaremba showed that $ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$ , γ being Euler’s constant, where $\Phi(n)=\sum_{d|n} \frac{\log d}{d}$ .

We extend this result to the function $\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$ and some other functions. We show that $ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma$ . The proof requires a new approach. As an application, we prove that for any $\eta>1$ , any finite sequence of reals $\{c_k, k\in K\}$ , $\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$ , where C(η) depends on η only. This improves a recent result obtained by the author.

Type
Research Article
Copyright
© Glasgow Mathematical Journal Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davenport, H., On a generalization of Euler’s function $\phi(n)$ , J. London Math. Soc. 7 (1932), 290296.CrossRefGoogle Scholar
Erdös, P. and Hall, R. R., On some unconventional problems on the divisors of integers, J. Austral. Math. Soc. (Series A) 25 (1978), 479485.CrossRefGoogle Scholar
Erdös, P. and Zaremba, S. K., The arithmetical function $\sum_{d|n} \frac{\log d}{d}$ , Demonstratio Math. 6(Part. 2) (1972), 575579.Google Scholar
Gronwall, T. H., Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 8 (1912), 118122.Google Scholar
Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math. 6(1) (1962), 6494.CrossRefGoogle Scholar
Sitaramaiah, V. and Subbarao, M. V., Maximal order of certain sums of powers of the logarithmic function, in The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Mathematical Society Lecture Notes Series, vol. 2 (Ramanujan Mathematical Society, Mysore, 2006), 141154.Google Scholar
Sitaramaiah, V. and Subbarao, M. V., The maximal order of certain arithmetic functions, Indian J. pures appl. Math. 24(b) (1993), 347355.Google Scholar
Weber, M., An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function, J. Number Th. 162 (2016), 137179.CrossRefGoogle Scholar
Zaremba, S. K., Good lattice points modulo composite numbers, Monatshefte für Math. 78 (1974), 446460.CrossRefGoogle Scholar