Consider the following two eigenvalue problems: (0.1) \begin{cases}\label{eqn:1abs}y"(x)+[\lambda^2-q(x)]y(x)=0, 0 \leq x \leq \pi,\\[3pt] y(0)=0, ay'(\pi)+\lambda y(\pi)=0, \end{cases}
\begin{cases}\label{eqn:1abs}y"(x)+[\lambda^2-q(x)]y(x)=0, 0 \leq x \leq \pi,\\[3pt] y(0)=0, ay'(\pi)+\lambda y(\pi)=0, \end{cases}  \begin{cases} z"(x)+[\mu^2-q(x)]z(x)=0, 0 \leq x \leq \pi,\\[3pt] z'(0)=0, az'(\pi)+\mu z(\pi)=0, \end{cases}
\begin{cases} z"(x)+[\mu^2-q(x)]z(x)=0, 0 \leq x \leq \pi,\\[3pt] z'(0)=0, az'(\pi)+\mu z(\pi)=0, \end{cases}
where  $q(x)$ is real-valued and integrable on [0,
$q(x)$ is real-valued and integrable on [0,  $\pi$]. Let
$\pi$]. Let  $\{\lambda_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ and
$\{\lambda_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ and  $\{\mu_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ denote the eigenvalues of equations (0.1) and (0.2), respectively. Then
$\{\mu_n\}_{n\in \mathbb{Z}\setminus \{0\}}$ denote the eigenvalues of equations (0.1) and (0.2), respectively. Then
 \[\cdots\lt\mu_{-3}\lt\lambda_{-2}\lt\mu_{-2}\lt\lambda_{-1}\lt\mu_{-1}\lt\mu_1\lt\lambda_1\lt\mu_2\lt\lambda_2\lt\mu_3\lt\cdots.\]
\[\cdots\lt\mu_{-3}\lt\lambda_{-2}\lt\mu_{-2}\lt\lambda_{-1}\lt\mu_{-1}\lt\mu_1\lt\lambda_1\lt\mu_2\lt\lambda_2\lt\mu_3\lt\cdots.\] $\lambda_n$ (
$\lambda_n$ ( $\mu_n$, respectively) in (0,
$\mu_n$, respectively) in (0,  $\pi$) is equal to
$\pi$) is equal to  $|n|-1$.
$|n|-1$.