Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T04:59:16.741Z Has data issue: false hasContentIssue false

DIMENSION ESTIMATE OF THE EXPONENTIAL ATTRACTOR FOR THE CHEMOTAXIS–GROWTH SYSTEM*

Published online by Cambridge University Press:  01 September 2008

MESSOUD EFENDIEV
Affiliation:
Department of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany e-mail: messoud.efendiyev@gsf.de
ETSUSHI NAKAGUCHI
Affiliation:
Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan e-mail: nakaguti@ist.osaka-u.ac.jp
KOICHI OSAKI
Affiliation:
Department of Business Administration, Ube National College of Technology, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan e-mail: osaki@ube-k.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study an upper bound of the fractal dimension of the exponential attractor for the chemotaxis–growth system in a two-dimensional domain. We apply the technique given by Eden, Foias, Nicolaenko and Temam. Our results show that the bound is estimated by polynomial order with respect to the chemotactic coefficient in the equation similar to our preceding papers.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2008

References

REFERENCES

1.Aida, M., Efendiev, M. and Yagi, A., Quasilinear abstract parabolic evolution equations and exponential attractors, Osaka J. Math. 42 (2005), 101132.Google Scholar
2.Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A. and Mimura, M., Lower estimate of attractor dimension for chemotaxis growth system, J. London Math. Soc. 74 (2006), 453474.CrossRefGoogle Scholar
3.Alt, W. and Lauffenburger, D. A., Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol. 24 (1985), 691722.CrossRefGoogle Scholar
4.Babin, A. V. and Vishik, M. I., Attraktory Evolutsionnyky Uravnenii (Nauka, Moskow, 1989). Attractors of evolution equations, English translation, North-Holland, Amsterdam, 1992Google Scholar
5.Budrene, E. O. and Berg, H. C., Complex patterns formed by motile cells of Escherichia coli, Nature 349 (1991), 630633.CrossRefGoogle ScholarPubMed
6.Dung, L. and Nicolaenko, B., Exponential attractors in Banach spaces, J. Dyn. Diff. Eq. 13 (2001), 791806.CrossRefGoogle Scholar
7.Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Exponential attractors for dissipative evolution equations (Masson, Paris, 1994).Google Scholar
8.Efendiev, M. and Miranville, A., The dimension of the global attractor for dissipative reaction-diffusion systems, Appl. Math. Lett. 16 (2003), 351355.CrossRefGoogle Scholar
9.Efendiev, M., Miranville, A. and Zelik, S., Exponential attractors for a nonlinear reaction-diffusion system in ℝ3, C. R. Acad. Sci. Paris 330 (2000), 713718.CrossRefGoogle Scholar
10.Efendiev, M. and Nakaguchi, E., Upper and lower estimate of dimension of the global attractor for the chemotaxis–growth system: Part I, Adv. Math. Sci. Appl. 16 (2006), 569579.Google Scholar
11.Efendiev, M. and Nakaguchi, E., Upper and lower estimate of dimension of the global attractor for the chemotaxis–growth system II: Two-dimensional case, Adv. Math. Sci. Appl. 16 (2006), 581590.Google Scholar
12.Nakaguchi, E. and Efendiev, M., On a new dimension estimate of the global attractor for chemotaxis–growth systems, Osaka J. Math. 45 (2008), 273281.Google Scholar
13.Efendiev, M., Nakaguchi, E. and Wendland, W. L., Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis–growth system, Discrete Conti. Dyn. Syst. 2007 (Suppl.) (2007), 334343.Google Scholar
14.Efendiev, M. and Yagi, A., Continuous dependence on a parameter of exponential attractors for chemotaxis–growth system, J. Math. Soc. Japan 57 (2005), 167181.CrossRefGoogle Scholar
15.Ford, R. M. and Lauffenburger, D. A., Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients, Bull. Math. Biol. 53 (1991), 721749.CrossRefGoogle ScholarPubMed
16.Haken, H., Synergetics—An introduction, 3rd ed. (Springer-Verlag, New York, 1983).CrossRefGoogle Scholar
17.Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399415.CrossRefGoogle ScholarPubMed
18.Kostin, I. N., Rate of attraction to a non-hyperbolic attractor, Asymptot. Anal. 16 (1998), 203222.Google Scholar
19.Kuto, K., Kurata, N., Osaki, K., Tsujikawa, T. and Sakurai, T., Hexagonal pattern formatioin in a chemotaxis-diffusion-growth model, preprint (2006).Google Scholar
20.Ladyzhenskaya, O., Attractors for semigroups and evolution equations (Cambridge University Press, Cambridge, UK, 1991).CrossRefGoogle Scholar
21.Lauffenburger, D. A. and Kennedy, C. R., Localized bacterial infection in a distributed model for tissue inflammation, J. Math. Biol. 16 (1983), 141163.CrossRefGoogle Scholar
22.Mimura, M. and Tsujikawa, T., Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A 230 (1996), 499543.CrossRefGoogle Scholar
23.Murray, J. D., Mathematical biology, 3rd ed. (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
24.Myerscough, M. R. and Murray, J. D., Analysis of propagating pattern in a chemotaxis system, Bull. Math. Biol. 54 (1992), 7794.CrossRefGoogle Scholar
25.Nakaguchi, E. and Yagi, A., Fully discrete approximations by Galerkin Runge-Kutta method for quasilinear parabolic systems, Hokkaido Math. J. 31 (2002), 385429.CrossRefGoogle Scholar
26.Nicolis, G. and Prigogine, I., Self-organization in nonequilibrium system—From dissipation structure to order through fluctuations (John Wiley & Sons, Chichester, 1977).Google Scholar
27.Osaki, K., Tsujikawa, T., Yagi, A. and Mimura, M., Exponential attractor for a chemotaxis–growth system of equations, Nonlinear Anal. 51 (2002), 119144.CrossRefGoogle Scholar
28.Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed. (Springer-Verlag, Berlin, 1997).CrossRefGoogle Scholar
29.Triebel, H.. Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978).Google Scholar
30.Woodward, D. E., Tyson, R., Myerscough, M. R., Murray, J. D., Budrene, E. O. and Berg, H. C., Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J. 68 (1995), 21812189.CrossRefGoogle ScholarPubMed