Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:30:34.057Z Has data issue: false hasContentIssue false

INTEGRAL MEANS OF THE DERIVATIVES OF BLASCHKE PRODUCTS

Published online by Cambridge University Press:  01 May 2008

EMMANUEL FRICAIN
Affiliation:
Université de Lyon; Université Lyon 1; Institut Camille Jordan CNRS UMR 5208; 43, boulevard du 11 Novembre 1918, F-69622 Villeurbanne e-mail: fricain@math.univ-lyon1.fr
JAVAD MASHREGHI
Affiliation:
Département de mathématiques et de statistique, Université Laval, Québec, QC, CanadaG1V 0A6 e-mail: Javad.Mashreghi@mat.ulaval.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the rate of growth of some integral means of the derivatives of a Blaschke product and we generalize several classical results. Moreover, we obtain the rate of growth of integral means of the derivative of functions in the model subspace KB generated by the Blaschke product B.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2008

References

REFERENCES

1.Ahern, P. R. and Clark, D. N.On inner functions with Hp-derivative, Michigan Math. J. 21 (1974), 115127.CrossRefGoogle Scholar
2.Ahern, P. R. and Clark, D. N.On inner functions with Bp-derivative, Michigan Math. J. 23 (1976), 107118.CrossRefGoogle Scholar
3.Cohn, W. S.On the Hp classes of derivative of functions orthogonal to invariant subspaces, Michigan Math. J. 30 (1983), 221229.CrossRefGoogle Scholar
4.Duren, P. L. and Schuster, A., Bergman spaces, Math. Surveys and Monographs, 100 (Amer. Math. Soc., Providence, R.I., 2004).CrossRefGoogle Scholar
5.Duren, P. L.Theory of Hp spaces (Academic Press, 1970).Google Scholar
6.Fricain, E.Bases of reproducing kernels in model spaces, J. Operator Theory 46 (2001), 517543.Google Scholar
7.Gotoh, Y.On integral means of the derivatives of Blaschke products, Kodai Math. J. 30 (2007), 147155.CrossRefGoogle Scholar
8.Havin, v. and Mashreghi, J., Admissible majorants for model subspaces of H2, Part I & II, Canadian J. Math. 55, 6 (2003), 12311263 and 12641301.CrossRefGoogle Scholar
9.Hedenmalm, H., Korenblum, B., and Zhu, K.Theory of Bergman spaces, Graduate Text in Mathematics, No. 199 (Springer-Verlag, 2000).CrossRefGoogle Scholar
10.Koosis, P.Introduction to Hp Spaces, Second Edition, Cambridge Tracts in Mathematics, No. 115 (Cambridge, 1998).Google Scholar
11.Kutbi, M. A.Integral means for the n'th derivative of Blaschke products, Kodai Math. J. 25 (2002), 191208.CrossRefGoogle Scholar
12.Linden, C. N.Hp-derivatives of Blaschke products, Michigan Math. J. 23 (1976), 4351.CrossRefGoogle Scholar
13.Mashreghi, J.Generalized Lipschitz functions, Comput. Methods Funct. Theory 5, (2005), 431444.CrossRefGoogle Scholar
14.Nikolski, N.Treatise on the shift operator (Springer-Verlag, 1986).CrossRefGoogle Scholar
15.Protas, D.Blaschke products with derivatives in Hp and Bp, Michigan Math. J. 20 (1973), 393396.Google Scholar
16.Protas, D.Mean growth of the derivative of a Blaschke product, Kodai Math. J. 27 (2004), 354359.CrossRefGoogle Scholar