Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T10:50:21.405Z Has data issue: false hasContentIssue false

On Dirichlet series attached to cusp forms and the Siegel-zero

Published online by Cambridge University Press:  18 May 2009

F. Grupp
Affiliation:
Universität Ulm, Abteilung für Mathematik, Oberer Eselsberg, D-7900 Ulm
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be an even integer greater than or equal to 12 and f an nonzero cusp form of weight k on SL(2, Z). We assume, further, that f is an eigenfunction for all Hecke-Operators and has the Fourier expansion

For every Dirichlet character xmod Q we define

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1984

References

REFERENCES

1.Deligne, P., La Conjecture de Weil I. Inst. Hautes Etudes Sci. Publ. Math. 43 (1973), 273307.CrossRefGoogle Scholar
2.Lekkerkerker, C. G., On the zeros of a class of Dirichlet series (Van Gorcum & Comp., Assen, 1955).Google Scholar
3.Moreno, C. J., Prime number theorems for the coefficients of modular forms, Bull. Amer. Math. Soc. 78 (1972), 796798.CrossRefGoogle Scholar
4.Ogg, A. P., On a convolution of L-series Invent. Math. 7 (1969), 297312.CrossRefGoogle Scholar
5.Pracher, K., Primzahlverteilung (Springer, 1957).Google Scholar
6.Rademacher, H., On the Phragmen-Lindelof theorem and some applications. Math. Z. 72 (1959), 192204.CrossRefGoogle Scholar
7.Rankin, R. A., Contributions to the theory of Ramanujan's function τ(n) and similar CO arithmetical functions. I. The zeros of the function , Proc. Cambridge Phil. Soc. 35 (1939), 351356.CrossRefGoogle Scholar
8.Rankin, R. A., Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Phil. Soc. 35 (1939), 357372.CrossRefGoogle Scholar
9.Rankin, R. A., An ω-Result for the coefficients of cusp forms. Math. Ann. 203 (1973), 239250.CrossRefGoogle Scholar