No CrossRef data available.
Article contents
Some integrability theorems
Published online by Cambridge University Press: 18 May 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
1. P. Heywood [3] proved the following theorems:
Theorem A. If 0 ≦ λ < 2, if xy−1g(x) ε L(0, π), and if
for n = 1, 2, 3,…, then the seriesis convergent.
Theorem B. If 0 ≦ λ < 1, if xy−1f(x)ε L(0, π), and if
for n = 1, 2, 3,…, then the seriesn−yanis convergent.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1965
References
REFERENCES
1.Boas, R. P. Jr, Integrability of trigonometric series (III). Quart. J. Math. Oxford Ser. (2) 3 (1952), 217–221.CrossRefGoogle Scholar
3.Heywood, P., Integrability theorems for trigonometric series, Quart. J. Math. Oxford Ser. (2) 13 (1962), 172–180.CrossRefGoogle Scholar
4.Karamata, J., Sur un mode de croissance regulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.Google Scholar
5.Karamata, J., Sur un mode de croissance regulière, Bull. Soc. Math, de France 61 (1933), 55–62.CrossRefGoogle Scholar
6.O'Shea, Siobhan, Note on an integrability theorem for sine series, Quart. J. Math. Oxford Ser. (2) 8 (1957), 279–281.CrossRefGoogle Scholar
You have
Access