Article contents
Some topological properties of residually Černikov groups
Published online by Cambridge University Press: 18 May 2009
Extract
In this paper we shall indicate how to generalise the concept of a cofinite group (see [7]). We recall that any residually finite group can be made into a topological group by taking as a basis of neighbourhoods of the identity precisely the normal subgroups of finite index. The class of compact cofinite groups is then easily seen to be the class of profinite groups, where a group is profinite if and only if it is an inverse limit of finite groups. It turns out that every cofinite group can be embedded as a dense subgroup of a profinite group. This has important consequences for the class of countable locally finite-soluble groups with finite Sylow p-subgroups for all primes p, as shown in [7] and [14].
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1982
References
REFERENCES
- 6
- Cited by