We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/iche/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the impact of a standardized, process-validated intervention utilizing daily hospital-wide patient-zone sporicidal disinfectant cleaning on incidence density of healthcare-onset Clostridioides difficile infection (HO-CDI) standardized infection ratios (SIRs).
Design:
Multi-site, quasi-experimental study, with control hospitals and a nonequivalent dependent variable.
Setting:
The study was conducted across 8 acute-care hospitals in 6 states with stable endemic HO-CDI SIRs.
Methods:
Following an 18-month preintervention control period, each site implemented a program of daily hospital-wide sporicidal disinfectant patient zone cleaning. After a wash-in period, thoroughness of disinfection cleaning (TDC) was monitored prospectively and optimized with performance feedback utilizing a previously validated process improvement program. Mean HO-CDI SIRs were calculated by quarter for the pre- and postintervention periods for both the intervention and control hospitals. We used a difference-in-differences analysis to estimate the change in the average HO-CDI SIR and HO-CAUTI SIR for the pre- and postintervention periods.
Results:
Following the wash-in period, the TDC improved steadily for all sites and by 18 months was 93.6% for the group. The mean HO-CDI SIRs decreased from 1.03 to 0.6 (95% CI, 0.13–0.75; P = .009). In the adjusted difference-in-differences analysis in comparison to controls, there was a 0.55 reduction (95% CI, −0.77 to −0.32) in HO-CDI (P < .001) or a 50% relative decrease from baseline.
Conclusions:
This study represents the first multiple-site, quasi-experimental study with control hospitals and a nonequivalent dependent variable to evaluate a 4-component intervention on HO-CDI. Following ongoing improvement in cleaning thoroughness, there was a sustained 50% decrease in HO-CDI SIRs compared to controls.
To determine the impact of the coronavirus disease 2019 (COVID-19) pandemic on healthcare-associated infection (HAI) incidence in US hospitals, national- and state-level standardized infection ratios (SIRs) were calculated for each quarter in 2020 and compared to those from 2019.
Methods:
Central–line–associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), select surgical site infections, and Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia laboratory-identified events reported to the National Healthcare Safety Network for 2019 and 2020 by acute-care hospitals were analyzed. SIRs were calculated for each HAI and quarter by dividing the number of reported infections by the number of predicted infections, calculated using 2015 national baseline data. Percentage changes between 2019 and 2020 SIRs were calculated. Supporting analyses, such as an assessment of device utilization in 2020 compared to 2019, were also performed.
Results:
Significant increases in the national SIRs for CLABSI, CAUTI, VAE, and MRSA bacteremia were observed in 2020. Changes in the SIR varied by quarter and state. The largest increase was observed for CLABSI, and significant increases in VAE incidence and ventilator utilization were seen across all 4 quarters of 2020.
Conclusions:
This report provides a national view of the increases in HAI incidence in 2020. These data highlight the need to return to conventional infection prevention and control practices and build resiliency in these programs to withstand future pandemics.
To characterize associations between exposures within and outside the medical workplace with healthcare personnel (HCP) SARS-CoV-2 infection, including the effect of various forms of respiratory protection.
Design:
Case–control study.
Setting:
We collected data from international participants via an online survey.
Participants:
In total, 1,130 HCP (244 cases with laboratory-confirmed COVID-19, and 886 controls healthy throughout the pandemic) from 67 countries not meeting prespecified exclusion (ie, healthy but not working, missing workplace exposure data, COVID symptoms without lab confirmation) were included in this study.
Methods:
Respondents were queried regarding workplace exposures, respiratory protection, and extra-occupational activities. Odds ratios for HCP infection were calculated using multivariable logistic regression and sensitivity analyses controlling for confounders and known biases.
Results:
HCP infection was associated with non–aerosol-generating contact with COVID-19 patients (adjusted OR, 1.4; 95% CI, 1.04–1.9; P = .03) and extra-occupational exposures including gatherings of ≥10 people, patronizing restaurants or bars, and public transportation (adjusted OR range, 3.1–16.2). Respirator use during aerosol-generating procedures (AGPs) was associated with lower odds of HCP infection (adjusted OR, 0.4; 95% CI, 0.2–0.8, P = .005), as was exposure to intensive care and dedicated COVID units, negative pressure rooms, and personal protective equipment (PPE) observers (adjusted OR range, 0.4–0.7).
Conclusions:
COVID-19 transmission to HCP was associated with medical exposures currently considered lower-risk and multiple extra-occupational exposures, and exposures associated with proper use of appropriate PPE were protective. Closer scrutiny of infection control measures surrounding healthcare activities and medical settings considered lower risk, and continued awareness of the risks of public congregation, may reduce the incidence of HCP infection.
To develop and evaluate a program to presvent hospital-acquired pneumonia (HAP).
Design:
Prospective, observational, surveillance program to identify HAP before and after 7 interventions. An order set automatically triggered in programmatically identified high-risk patients.
Setting:
All 21 hospitals of an integrated healthcare system with 4.4 million members.
Patients:
All hospitalized patients.
Interventions:
Interventions for high-risk patients included mobilization, upright feeding, swallowing evaluation, sedation restrictions, elevated head of bed, oral care and tube care.
Results:
HAP rates decreased between 2012 and 2018: from 5.92 to 1.79 per 1,000 admissions (P = .0031) and from 24.57 to 6.49 per 100,000 members (P = .0014). HAP mortality decreased from 1.05 to 0.34 per 1,000 admissions and from 4.37 to 1.24 per 100,000 members. Concomitant antibiotic utilization demonstrated reductions of broad-spectrum antibiotics. Antibiotic therapy per 100,000 members was measured as follows: carbapenem days (694 to 463; P = .0020), aminoglycoside days (154 to 61; P = .0165), vancomycin days (2,087 to 1,783; P = .002), and quinolone days (2,162 to 1,287; P < .0001). Only cephalosporin use increased, driven by ceftriaxone days (264 to 460; P = .0009). Benzodiazepine use decreased between 2014 to 2016: 10.4% to 8.8% of inpatient days. Mortality for patients with HAP was 18% in 2012% and 19% in 2016 (P = .439).
Conclusion:
HAP rates, mortality, and broad-spectrum antibiotic use were all reduced significantly following these interventions, despite the absence of strong supportive literature for guidance. Most interventions augmented basic nursing care. None had risks of adverse consequences. These results support the need to examine practices to improve care despite limited literature and the need to further study these difficult areas of care.
To characterize the magnitude of virus contamination on personal protective equipment (PPE), skin, and clothing of healthcare workers (HCWs) who cared for patients having acute viral infections.
Design:
Prospective observational study.
Setting:
Acute-care academic hospital.
Participants:
A total of 59 HCWs agreed to have their PPE, clothing, and/or skin swabbed for virus measurement.
Methods:
The PPE worn by HCW participants, including glove, face mask, gown, and personal stethoscope, were swabbed with Copan swabs. After PPE doffing, bodies and clothing of HCWs were sampled with Copan swabs: hand, face, and scrubs. Preamplification and quantitative polymerase chain reaction (qPCR) methods were used to quantify viral RNA copies in the swab samples.
Results:
Overall, 31% of glove samples, 21% of gown samples, and 12% of face mask samples were positive for virus. Among the body and clothing sites, 21% of bare hand samples, 11% of scrub samples, and 7% of face samples were positive for virus. Virus concentrations on PPE were not statistically significantly different than concentrations on skin and clothing under PPE. Virus concentrations on the personal stethoscopes and on the gowns were positively correlated with the number of torso contacts (P < .05). Virus concentrations on face masks were positively correlated with the number of face mask contacts and patient contacts (P < .05).
Conclusions:
Healthcare workers are routinely contaminated with respiratory viruses after patient care, indicating the need to ensure that HCWs complete hand hygiene and use other PPE to prevent dissemination of virus to other areas of the hospital. Modifying self-contact behaviors may decrease the presence of virus on HCWs.
To investigate the impact of discontinuing contact precautions among patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) on rates of healthcare-associated infection (HAI). DESIGN. Single-center, quasi-experimental study conducted between 2011 and 2016.
METHODS
We employed an interrupted time series design to evaluate the impact of 7 horizontal infection prevention interventions across intensive care units (ICUs) and hospital wards at an 865-bed urban, academic medical center. These interventions included (1) implementation of a urinary catheter bundle in January 2011, (2) chlorhexidine gluconate (CHG) perineal care outside ICUs in June 2011, (3) hospital-wide CHG bathing outside of ICUs in March 2012, (4) discontinuation of contact precautions in April 2013 for MRSA and VRE, (5) assessments and feedback with bare below the elbows (BBE) and contact precautions in August 2014, (6) implementation of an ultraviolet-C disinfection robot in March 2015, and (7) 72-hour automatic urinary catheter discontinuation orders in March 2016. Segmented regression modeling was performed to assess the changes in the infection rates attributable to the interventions.
RESULTS
The rate of HAI declined throughout the study period. Infection rates for MRSA and VRE decreased by 1.31 (P=.76) and 6.25 (P=.21) per 100,000 patient days, respectively, and the infection rate decreased by 2.44 per 10,000 patient days (P=.23) for device-associated HAI following discontinuation of contact precautions.
CONCLUSION
The discontinuation of contact precautions for patients infected or colonized with MRSA or VRE, when combined with horizontal infection prevention measures was not associated with an increased incidence of MRSA and VRE device-associated infections. This approach may represent a safe and cost-effective strategy for managing these patients.
To determine the impact of an environmental disinfection intervention on the incidence of healthcare-associated Clostridium difficile infection (CDI).
DESIGN
A multicenter randomized trial.
SETTING
In total,16 acute-care hospitals in northeastern Ohio participated in the study.
INTERVENTION
We conducted a 12-month randomized trial to compare standard cleaning to enhanced cleaning that included monitoring of environmental services (EVS) personnel performance with feedback to EVS and infection control staff. We assessed the thoroughness of cleaning based on fluorescent marker removal from high-touch surfaces and the effectiveness of disinfection based on environmental cultures for C. difficile. A linear mixed model was used to compare CDI rates in the intervention and postintervention periods for control and intervention hospitals. The primary outcome was the incidence of healthcare-associated CDI.
RESULTS
Overall, 7 intervention hospitals and 8 control hospitals completed the study. The intervention resulted in significantly increased fluorescent marker removal in CDI and non-CDI rooms and decreased recovery of C. difficile from high-touch surfaces in CDI rooms. However, no reduction was observed in the incidence of healthcare-associated CDI in the intervention hospitals during the intervention and postintervention periods. Moreover, there was no correlation between the percentage of positive cultures after cleaning of CDI or non-CDI rooms and the incidence of healthcare-associated CDI.
CONCLUSIONS
An environmental disinfection intervention improved the thoroughness and effectiveness of cleaning but did not reduce the incidence of healthcare-associated CDI. Thus, interventions that focus only on improving cleaning may not be sufficient to control healthcare-associated CDI.
An outbreak of infection with vancomycin-resistant Enterococcus faecium occurred at Hôtel-Dieu Hospital (Clermont-Ferrand, France). A case-control study was performed in the infectious diseases and hematology units of the hospital. Urinary catheter use (odds ratio [OR], 12 [95% confidence interval {CI}, 1.5-90]; P<.02), prior exposure to a third-generation cephalosporin (OR, 22 [95% CI, 3-152]; P = .002), and prior exposure to antianaerobials (OR, 11 [95% CI, 1.5-88]; P<.02) were independently predictive of vancomycin-resistant Enterococcus faecium carriage.
To determine the durability of methicillin-resistant Staphylococcus aureus (MRSA)–free status after patients are removed from contact precautions and the association of specific clearance policy variables with survival
Design.
Retrospective cohort study from October 2007 to April 2013.
Setting.
Veteran Affairs Boston Healthcare System.
Participants.
Patients with a prior history of MRSA who were removed from contact precautions after deemed cleared of their MRSA status by infection prevention.
Methods.
Active nasal screening results and clinical data from acute, long-term, and outpatient care facilities were evaluated to determine survival of MRSA-free status in a time-to-event analysis.
Results.
A total of 351 unique patients were followed for 107,112 patient-days. The median age was 68 years. Overall, 249 (71%) of patients remained MRSA-free, and 102 (29%) reverted to MRSA positive. The median MRSA-free survival was 880 days. Comorbidities, presence of indwelling devices, and the use of systemic antibiotics at the time of clearance screening were not associated with MRSA-free survival. More than 21,000 days of inpatient isolation days were avoided during the study period.
Conclusions.
The majority of patients removed from contact precautions remained MRSA-free for more than 2 years. Antibiotic use at the time of clearance was not associated with reductions in MRSA-free survival. These findings can be used to simplify clearance criteria, promote clearance policies, and reduce patient isolation days.
We aimed to determine the frequency of qacA/B chlorhexidine tolerance genes and high-level mupirocin resistance among MRSA isolates before and after the introduction of a chlorhexidine (CHG) daily bathing intervention in a surgical intensive care unit (SICU).
DESIGN
Retrospective cohort study (2005–2012)
SETTING
A large tertiary-care center
PATIENTS
Patients admitted to SICU who had MRSA surveillance cultures of the anterior nares
METHODS
A random sample of banked MRSA anterior nares isolates recovered during (2005) and after (2006–2012) implementation of a daily CHG bathing protocol was examined for qacA/B genes and high-level mupirocin resistance. Staphylococcal cassette chromosome mec (SCCmec) typing was also performed.
RESULTS
Of the 504 randomly selected isolates (63 per year), 36 (7.1%) were qacA/B positive (+) and 35 (6.9%) were mupirocin resistant. Of these, 184 (36.5%) isolates were SCCmec type IV. There was a significant trend for increasing qacA/B (P=.02; highest prevalence, 16.9% in 2009 and 2010) and SCCmec type IV (P<.001; highest prevalence, 52.4% in 2012) during the study period. qacA/B(+) MRSA isolates were more likely to be mupirocin resistant (9 of 36 [25%] qacA/B(+) vs 26 of 468 [5.6%] qacA/B(−); P=.003).
CONCLUSIONS
A long-term, daily CHG bathing protocol was associated with a change in the frequency of qacA/B genes in MRSA isolates recovered from the anterior nares over an 8-year period. This change in the frequency of qacA/B genes is most likely due to patients in those years being exposed in prior admissions. Future studies need to further evaluate the implications of universal CHG daily bathing on MRSA qacA/B genes among hospitalized patients.
To evaluate the impact of a multifaceted intervention on compliance with evidence-based therapies and ventilator-associated pneumonia (VAP) rates.
Design.
Collaborative cohort before-after study.
Setting.
Intensive care units (ICUs) predominantly in Michigan.
Interventions.
We implemented a multifaceted intervention to improve compliance with 5 evidence-based recommendations for mechanically ventilated patients and to prevent VAP. A standardized CDC definition of VAP was used and maintained at each site, and data on the number of VAPs and ventilator-days were obtained from the hospital's infection preventionists. Baseline data were reported and postimplementation data were reported for 30 months. VAP rates (in cases per 1,000 ventilator-days) were calculated as the proportion of ventilator-days per quarter in which patients received all 5 therapies in the ventilator care bundle. Two interventions to improve safety culture and communication were implemented first.
Results.
One hundred twelve ICUs reporting 3,228 ICU-months and 550,800 ventilator-days were included. The overall median VAP rate decreased from 5.5 cases (mean, 6.9 cases) per 1,000 ventilator-days at baseline to 0 cases (mean, 3.4 cases) at 16–18 months after implementation (P < .001) and 0 cases (mean, 2.4 cases) at 28-30 months after implementation (P < .001). Compared to baseline, VAP rates decreased during all observation periods, with incidence rate ratios of 0.51 (95% confidence interval, 0.41–0.64) at 16–18 months after implementation and 0.29 (95% confidence interval, 0.24–0.34) at 28–30 months after implementation. Compliance with evidence-based therapies increased from 32% at baseline to 75% at 16–18 months after implementation (P < .001) and 84% at 28–30 months after implementation (P < .001).
Conclusions.
A multifaceted intervention was associated with an increased use of evidence-based therapies and a substantial (up to 71%) and sustained (up to 2.5 years) decrease in VAP rates.
Controlled studies that took place in medical intensive care units (MICUs) have demonstrated that bathing patients with Chlorhexidine gluconate (CHG) can reduce skin colonization with potential pathogens and can lessen the risk of central venous catheter (CVC)-associated bloodstream infection (BSI).
Objective.
TO examine, without oversight of practice by research study staff, the effectiveness or real-world effect of patient cleansing with CHG on rates of CVC-associated BSI.
Design.
In the fall of 2005, the MICU at Rush University Medical Center discontinued bathing patients daily with soap and water and substituted skin cleansing with no-rinse, 2% CHG-impregnated cloths. This change was a clinical management decision without research input.
Setting.
A 21-bed MICU at Rush University Medical Center.
Patients.
Patients hospitalized in the MICU during the period from September 2004 through October 2006.
Methods.
In a pre-post study design, we gathered data from administrative and laboratory databases, infection control practitioner logs, and patient medical charts to compare rates of CVC-associated BSI and blood culture contamination between the baseline soap-and-water bathing period (September 2004-October 2005) and the CHG bathing period (November 2005-October 2006). Rates of secondary BSI, Clostridium difficile infection (CDI), ventilator-associated pneumonia (VAP), and urinary tract infection (UTI) served as control variables that were not expected to be affected by CHG bathing.
Results.
Bathing with CHG was associated with a statistically significant decrease in the rate of CVC-associated BSI (from 5.31 to 0.69 cases per 1,000 CVC-days; P = .006) and in the rate of blood culture contamination (from 6.99 to 4.1 cases per 1,000 patient-days; P = .04). Rates of secondary BSI, CDI, VAP, and UTI did not change significantly.
Conclusions.
In our analysis of real-world practice, daily bathing of MICU patients with CHG was effective at reducing rates of CVC-associated BSI and blood culture contamination. Controlled studies are needed to determine whether these beneficial effects extend outside the MICU.
To describe a Klebsiella pneumoniae carbapenemase (KPC)–producing carbapenem-resistant Enterobacteriaceae (CRE) outbreak and interventions to prevent transmission.
Design, Setting, and Patients.
Epidemiologic investigation of a CRE outbreak among patients at a long-term acute care hospital (LTACH).
Methods.
Microbiology records at LTACH A from March 2009 through February 2011 were reviewed to identify CRE transmission cases and cases admitted with CRE. CRE bacteremia episodes were identified during March 2009–July 2011. Biweekly CRE prevalence surveys were conducted during July 2010–July 2011, and interventions to prevent transmission were implemented, including education and auditin? of staff and isolation and cohorting of CRE patients with dedicated nursing staff and shared medical equipment. Trends were evaluated using weighted linear or Poisson regression. CRE transmission cases were included in a case-control study to evaluate risk factors for acquisition. A real-time polymerase chain reaction assay was used to detect the blaKPC gene, and pulsed-field gel electrophoresis was performed to assess the genetic relatedness of isolates.
Results.
Ninety-nine CRE transmission cases, 16 admission cases (from 7 acute care hospitals), and 29 CRE bacteremia episodes were identified. Significant reductions were observed in CRE prevalence (49% vs 8%), percentage of patients screened with newly detected CRE (44% vs 0%), and CRE bacteremia episodes (2.5 vs 0.0 per 1,000 patient-days). Cases were more likely to have received β-lactams, have diabetes, and require mechanical ventilation. All tested isolates were KPC-producing K. pneumoniae, and nearly all isolates were genetically related.
Conclusion.
CRE transmission can be reduced in LTACHs through surveillance testing and targeted interventions. Sustainable reductions within and across healthcare facilities may require a regional public health approach.
Carbapenem-resistant Klebsiella pneumoniae is an emerging healthcare-associated pathogen.
Objective.
To describe the epidemiology of and clinical outcomes associated with carbapenem-resistant K. pneumoniae infection and to identify risk factors associated with mortality among patients with this type of infection.
Setting.
Mount Sinai Hospital, a 1,171-bed tertiary care teaching hospital in New York City.
Design.
Two matched case-control studies.
Methods.
In the first matched case-control study, case patients with carbapenem-resistant K. pneumoniae infection were compared with control patients with carbapenem-susceptible K. pneumoniae infection. In the second case-control study, patients who survived carbapenem-resistant K. pneumoniae infection were compared with those who did not survive, to identify risk factors associated with mortality among patients with carbapenem-resistant K. pneumoniae infection.
Results.
There were 99 case patients and 99 control patients identified. Carbapenem-resistant K. pneumoniae infection was independently associated with recent organ or stem-cell transplantation (P = .008), receipt of mechanical ventilation (P = .04), longer length of stay before infection (P = .01), and exposure to cephalosporins (P = .02) and carbapenems (P < .001). Case patients were more likely than control patients to die during hospitalization (48% vs 20%; P < .001) and to die from infection (38% vs 12%; P < .001). Removal of the focus of infection (ie, debridement) was independently associated with patient survival (P = .002). The timely administration of antibiotics with in vitro activity against carbapenem-resistant K. pneumoniae was not associated with patient survival.
Conclusions.
Carbapenem-resistant K. pneumoniae infection is associated with numerous healthcare-related risk factors and with high mortality. The mortality rate associated with carbapenem-resistant K. pneumoniae infection and the limited antimicrobial options for treatment of carbapenem-resistant K. pneumoniae infection highlight the need for improved detection of carbapenem-resistant K. pneumoniae infection, identification of effective preventive measures, and development of novel agents with reliable clinical efficacy against carbapenem-resistant K. pneumoniae.
Current guidelines for control of Clostridium difficile infection (CDI) suggest that contact precautions be discontinued after diarrhea resolves. However, limited information is available regarding the frequency of skin contamination and environmental shedding of C. difficile during and after treatment.
Design.
We conducted a 9-month prospective, observational study involving 52 patients receiving therapy for CDI. Stool samples, skin (chest and abdomen) samples, and samples from environmental sites were cultured for C. difficile before, during, and after treatment. Polymerase chain reaction ribotyping was performed to determine the relatedness of stool, skin, and environmental isolates.
Results.
Fifty-two patients with CDI were studied. C. difficile was suppressed to undetectable levels in stool samples from most patients during treatment; however, 1-4 weeks after treatment, 56% of patients who had samples tested were asymptomatic carriers of C. difficile. The frequencies of skin contamination and environmental shedding remained high at the time of resolution of diarrhea (60% and 37%, respectively), were lower at the end of treatment (32% and 14%, respectively), and again increased 1-4 weeks after treatment (58% and 50%, respectively). Skin and environmental contamination after treatment was associated with use of antibiotics for non-CDI indications. Ninety-four percent of skin isolates and 82% of environmental isolates were genetically identical to concurrent stool isolates.
Conclusions.
Skin contamination and environmental shedding of C. difficile often persist at the time of resolution of diarrhea, and recurrent shedding is common 1-4 weeks after therapy. These results provide support for the recommendation that contact precautions be continued until hospital discharge if rates of CDI remain high despite implementation of standard infection-control measures.
To evaluate the impact of an institutional hand hygiene accountability program on healthcare personnel hand hygiene adherence.
Design.
Time-series design with correlation analysis.
Setting.
Tertiary care academic medical center, including outpatient clinics and procedural areas.
Participants.
Medical center healthcare personnel.
Methods.
A comprehensive hand hygiene initiative was implemented in 2 major phases starting in July 2009. Key facets of the initiative included extensive project planning, leadership buy-in and goal setting, financial incentives linked to performance, and use of a system-wide shared accountability model. Adherence was measured by designated hand hygiene observers. Adherence rates were compared between baseline and implementation phases, and monthly hand hygiene adherence rates were correlated with monthly rates of device-associated infection.
Results.
A total of 109,988 observations were completed during the study period, with a sustained increase in hand hygiene adherence throughout each implementation phase (P<.0001) as well as from one phase to the next (P < .0001), such that adherence greater than 85% has been achieved since January 2011. Medical center departments were able to reclaim some rebate dollars allocated through a self-insurance trust, but during the study period, departments did not achieve full reimbursement. Hand hygiene adherence rates were inversely correlated with device-associated standardized infection ratios (R2 = 0.70).
Conclusions.
Implementation of this multifaceted, observational hand hygiene program was associated with sustained improvement in hand hygiene adherence. The principles of this program could be applied to other medical centers pursuing improved hand hygiene adherence among healthcare personnel.
To estimate the cost of healthcare-associated infections (HAIs) in a network of 28 community hospitals and to compare this sum to the amount budgeted for infection control programs at each institution and for the entire network.
Design.
We reviewed literature published since 1985 to estimate costs for specific HAIs. Using these estimates, we determined the costs attributable to specific HAIs in a network of 28 hospitals during a 1-year period (January 1 through December 31, 2004). Cost-saving models based on reductions in HAIs were calculated.
Setting.
Twenty-eight community hospitals in the southeastern region of the United States.
Results.
The weight-adjusted mean cost estimates for HAIs were $25,072 per episode of ventilator-associated pneumonia, $23,242 per nosocomial blood stream infection, $10,443 per surgical site infection, and $758 per catheter-associated urinary tract infection. The median annual cost of HAIs per hospital was $594,683 (interquartile range [IQR], $299,057-$l,287,499). The total annual cost of HAIs for the 28 hospitals was greater than $26 million. Hospitals budgeted a median of $129,000 (IQR, $92,500-$200,000) for infection control; the median annual cost of HAIs was 4.6 (IQR, 3.4-8.0) times the amount budgeted for infection control. An annual reduction in HAIs of 25% could save each hospital a median of $148,667 (IQR, $74,763-$296,861) and could save the group of hospitals more than $6.5 million.
Conclusions.
The economic cost of HAIs in our group of 28 study hospitals was enormous. In the modern age of infection control and patient safety, the cost-control ratio will become the key component of successful infection control programs.
To assess the impact of a novel, silver-coated needleless connectors (NCs) on central-line–associated bloodstream infection (CLABSI) rates compared with a mechanically identical NCs without a silver coating.
DESIGN
Prospective longitudinal observation study
SETTING
Two 500-bed university hospitals
PATIENTS
All hospitalized adults from November 2009 to June 2011 with non-hemodialysis central lines
INTERVENTIONS
Hospital A started with silver-coated NCs and switched to standard NCs in September 2010; hospital B started with standard NCs and switched to silver-coated NCs. The primary outcome was the difference revealed by Poisson multivariate regression in CLABSI rate using standard Centers for Disease Control and Prevention surveillance definitions. The secondary outcome was a comparison of organism-specific CLABSI rates by NC type.
RESULTS
Among 15,845 hospital admissions, 140,186 central-line days and 221 CLABSIs were recorded during the study period. In a multivariate model, the CLABSI rate per 1,000 central-line days was lower with silver-coated NCs than with standard NCs (1.21 vs 1.79; incidence rate ratio=0.68 [95% CI: 0.52–0.89], P=.005). A lower CLABSI rate per 1,000 central-line days for the silver-coated NCs versus the standard NCs was observed with S. aureus (0.11 vs 0.30, P=.02), enterococci (0.10 vs 0.27, P=.03), and Gram-negative organisms (0.28 vs 0.63, P=.003) but not with coagulase-negative staphylococci (0.31 vs 0.36) or Candida spp. (0.42 vs 0.40).
CONCLUSIONS
The use of silver-coated NCs decreased the CLABSI rate by 32%. CLABSI reduction efforts should include efforts to minimize contamination of NCs.