Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T05:04:43.319Z Has data issue: false hasContentIssue false

Digitally assisted equalization of third-order intermodulation products in wideband direct conversion receivers

Published online by Cambridge University Press:  22 June 2009

Edward A. Keehr
Affiliation:
Department of Electrical Engineering, California Institute of Technology, 1200 E. California Boulevard, M/C 136-93, Pasadena, CA 91125, USA.
Ali Hajimiri*
Affiliation:
Department of Electrical Engineering, California Institute of Technology, 1200 E. California Boulevard, M/C 136-93, Pasadena, CA 91125, USA.
*
Corresponding author: A. Hajimiri Email: hajimiri@caltech.edu

Abstract

An effective linearization technique capable of equalizing IM3 products resulting from an arbitrary out-of-band blocking scenario in a wideband direct conversion receiver is presented. IM3 products are regenerated in the RF analog domain of a low-power mixed-signal feedforward path and are used to cancel analogous signal terms in the original receiver at digital baseband via adaptive equalization. The composite SAW-less receiver achieves an improvement in effective IIP3 from −7.1 to +5.3 dBm under worst-case UMTS Region 1 blocking when the feedforward path is active.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Keehr, E.; Hajimiri, A.: Digitally assisted linearization of wideband direct conversion receivers, in Proc. IEEE European Microwave Integrated Circuit Conf. (2008), pp. 159162.Google Scholar
[2]Keehr, E.; Hajimiri, A.: Equalization of third-order intermodulation products in wideband direct-conversion receivers. IEEE J. Solid-State Circuits, 43 (2008), 28532867.CrossRefGoogle Scholar
[3]Valkama, M.; Ghadam, A.S.H.; Antilla, L.; Renfors, M.: Advanced digital signal processing techniques for compensation of nonlinear distortion in wideband multicarrier radio receivers. IEEE Trans. Microwave Theory Tech., 54 (2006), 2356–66.CrossRefGoogle Scholar
[4]Liscidini, A.; Brandolini, M.; Sanzogni, D.; Castello, R.: A 0.13 mm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier. IEEE J. Solid State Circuits, 41 (2006), 981–9.CrossRefGoogle Scholar
[5]Floyd, B.A.; Reynolds, S.K.; Zwick, T.; Khuon, L.; Beukema, T.; Pfeiffer, U.R.: WCDMA direct-conversion receiver front-end comparison in RF-CMOS and SiGe BiCMOS. IEEE Trans. Microwave Theory Tech., 53 (2002), 11811188.CrossRefGoogle Scholar
[6]Keehr, E.; Hajimiri, A.: Analysis of internally bandlimited multistage cubic term generators for RF receivers. IEEE Transactions on Circuits and Systems – I, available athttp://ieeexplore.ieee.org.Google Scholar
[7]Shearer, F.; MacEachern, L.: A precision CMOS analog cubing circuit, in IEEE NEWCAS, 2004, 281284.Google Scholar
[8]Westesson, E.; Sundstrom, L.: A complex polynomial predistorter chip in CMOS for baseband or IF linearization of RF power amplifiers in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS '99), vol. 1, 1999, 206209.Google Scholar
[9]Nesimoglu, T.; Canagarajah, C.N.; McGeehan, J.P.: A broadband polynomial predistorter for reconfigurable radio, in Vehicular Technology Conf., 2001, vol. 3, 2001, 19681972.Google Scholar
[10]Rahkonen, T.; et al. : Performance of an integrated 2.1 GHz analog predistorter, in 2006 Int. Workshop on Integrated Nonlinear Microwave and Millimeter-Wave Circuits, 2006, 3437.CrossRefGoogle Scholar
[11]Oba, H.; Kim, M.; Arai, H.: FPGA implementation of LMS and N-LMS processor for adaptive array applications, in Int. Symp. Intelligent Signal Processing and Communications (ISPACS) Digest of Technical Papers, 2006, 485488.Google Scholar
[12]UE Radio Transmission and Reception (FDD), Tech. Specification Group, 3 GPP, (TSG) RAN WG4, TS 25.101, v8.1.0, December 2007.Google Scholar
[13]muRata Corp Part Number DFYK61G95LBJCA, http://www.murata.com. Data sheet available athttp://smartdata.usbid.com/datasheets/usbid/dsid/103495.pdf.Google Scholar
[14]Springer, A.; Maurer, L.; Weigel, R.: RF system concepts for highly integrated RFICs for W-CDMA mobile radio terminals. IEEE Trans. Microwave Theory Tech., 50 (2002), 254267.CrossRefGoogle Scholar
[15]Reynolds, S.K.; Floyd, B.A.; Beukema, T.J.; Zwick, T.; Pfeiffer, U.R.: Design and compliance testing of a SiGe WCDMA receiver IC with integrated analog baseband. Proc. IEEE, 93 (2005), 16241636.CrossRefGoogle Scholar