Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:18:46.288Z Has data issue: false hasContentIssue false

Effects of nitrogen and calcium on the level of resistance of cassava to the mealybug P. manihoti

Published online by Cambridge University Press:  19 September 2011

B. Le Rü
Affiliation:
Laboratoire d'Entomologie Agricole, ORSTOM, BP 181, Brazzaville, R. du, Congo
J. P. Diangana
Affiliation:
Laboratoire d'Entomologie Agricole, ORSTOM, BP 181, Brazzaville, R. du, Congo
N. Beringar
Affiliation:
Laboratoire d'Entomologie Agricole, ORSTOM, BP 181, Brazzaville, R. du, Congo
Get access

Abstract

The effects of various levels of cow manure (equivalent to 0–50 kg nitrogen/ha.) or ground limestone (equivalent to 0–5 tons calcium/ha.) on the expression of resistance of cassava, Manihot esculenta Crantz to the cassava mealybug, Phenacoccus manihoti Mat. Ferr., were investigated under semi-controlled conditions in the laboratory. The study was made on two varieties of cassava, Moudouma and MM79, characterized by different levels of resistance in terms of antibiosis and tolerance. The antibiotic component was evaluated by determining the intrinsic capacity for increase rc and tolerance by quantifying morphological and physiological modifications in the growth of plants induced by 2 months infestation by 100 mealybugs.

The antibiotic resistance of the two varieties was reduced by both fertilizers. However, the reduction was only significant at levels of 10 and 20 kg N/ha. and 1 and 1.51 Ca/ha. for Moudouma and MM79 respectively.

In both varieties, tolerance was increased by the addition of nitrogen and not modified by the addition of lime.

The integration of these results into traditional cassava crops systems has also been discussed.

Résumé

L'influence de différents niveaux de fertilisation azotée (de 0 à 50 KgN/ha) ou calcique (de 0 à 5 tonnes/ha) sur l'expression de la résistance du manioc, Manihot esculenta Crantz, vis à vis de la cochenille farineuse du manioc, Phenacoccus manihoti Matt. Ferr., a été étudiée en conditions expérimentales de laboratoire. L'étude a porté sur deux variétés de manioc, Moudouma et MM79, caractérisées par des niveaux de résistance de type antibiose et tolérance différents. La composante antibiotique a été appréciée au travers de la détermination de la capacité intrisèque d'accroissement rc et, la tolérance en quantifiant les modifications morphologiques et physiologiques de la croissance des plantes provoquées par une infestation de 2 mois par cent cochenilles.

La résistance antibiotique des deux variétés de manioc est réduite par les deux fertilisations minérales. La réduction n'est cependant significative qu'aux taux 10 et 20 kgN/ha. respectivement pour Moudouma et MM79 et, aux taux 1 et 1,5 T/ha. de calcaire pour les deux variétés.

Chez les deux variétés, la résistance de type tolérance est augmentée par l'apport d'azote et non modifiée par l'apport de calcaire.

L'integration de ces résultats, dans les systèmes culturaux traditionnels à base de manioc est par ailleurs évoquée.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ankersmit, G. W. (1989) Host plant resistance. In Aphids: Their Biology, Natural Enemies and Control (Edited by Minks, A. K. and Harrewijn, P.), Vol. 3C. pp. 273278. Elseviers, Amsterdam.Google Scholar
Arrivets, J. (1989) Compete Rendu Analytique des Essais Agronomiques au C.A.I.E.M. en 1986–1988 (Edited by D.G.R.S.T), Ministère de la Recherche Scientifique, R. Congo.Google Scholar
Auclair, J. L. (1989) Host plant resistance. In Aphids: Their Biology, Natural Enemies and Control (Edited by Minks, A. K. and Harrewijn, P.), Vol. 3C, pp. 225265. Elsevier, Amsterdam.Google Scholar
Beattie, G. A. C., Weir, R. G., Clift, A. D. and Jiang, L. (1990) Effect of nutrients on the growth and phenology of Gascardia destructor (Newstead) and Ceroplastes sinensis Del Guercio (Hemiptera: Coccidae) infesting citrus. J. Aus. entomol. Soc., 29, 199203.CrossRefGoogle Scholar
Calatayud, P. A. (1993) Etude des relations nutritionnelles de la cochenille du manioc avec sa plante hôte. Thése de Doctorat, Université de Lyon.Google Scholar
Campbell, C. A. M. (1984) The influence of overhead shade and fertilizers on the Homoptera of mature Upper-Amazon cocoa trees in Ghana. Bull. Entomol Res. 74, 163174.CrossRefGoogle Scholar
Causton, D. R. and Venus, J. C. (1981) The Biometry of Plant Growth. Edward Arnold Ltd., London.Google Scholar
Chaboussou, F. (1974) Le conditionnement physiologique des citrus comme moyen de lutte vis-à-vis des ravageurs des agrumes. Fruits 29(1), 2333.Google Scholar
Cock, J. H. and Reyes, J. A. (1985) Cassava: Research, Production and Utilization. UNDP/CIAT.Google Scholar
Fennah, R. T. (1959) Nutritional factors associated with the development of mealybugs in cacao. Report of the Cacao Research Institute of Trinidad, 1957–1958, pp. 1828.Google Scholar
Goergen, G. and Neuenschwander, P. (1992) A cage experiment with four trophic levels: cassava plant growth as influenced by cassava mealybug, Phenacoccus manihoti, its parasitoid Epidinocarsis lopezi, and the hyperparasitoids Prochiloneurus insolitus and Chartocerus hyalipennis. J. Plant Dis. Prot. 99(2), 182190.Google Scholar
Gutierrez, A. P., Neuenschwander, P., Schulthess, F., Herren, H. R., Baumgaertner, J. U., Wermelinger, B., Löhr, B. and Ellis, C. K. (1988) Analysis of biological control of cassava pests in Africa. II. Cassava mealybug Phenacoccus manihoti. J. Appl. Ecol. 25, 921940.Google Scholar
Hammer, G. L. (1980) Estimation of cassava leaf area by a simple, non destructive field technique. J. Aust. Inst. Agric. Sci., 6162.Google Scholar
Harrewijn, P. (1977) Use of soilless culture in the establishment of host plant insect relationships. In Proceedings Fourth International Congress on Soilless Culture, Wageningen, The Netherlands, pp. 347358.Google Scholar
Harrewijn, P. and Dieleman, F. L. (1984) The importance of mineral nutrition of the host plant in resistance breeding to aphids. In Proceedings Sixth International Congress on Soilless Culture, Wageningen, The Netherlands, pp. 235244.Google Scholar
Harrewijn, P. and Piron, P. G. M. (1988) Effect of nitrogen on the level of resistance of lettuce to aphids. In Proceedings Seventh International Congress on Soilless Culture, Wageningen, The Netherlands, pp. 185193.Google Scholar
Howeler, R. H. (1985) Mineral nutrition and fertilization of cassava (Manihot esculenta Crantz). CIAT, Cali, Colombia.Google Scholar
Janson, R. K. and Smilowitz, Z. (1986) Influence of nitrogen on population parameters of potato insects: abundance, population growth, and within-plant distribution of the green peach aphid, Myzus persicae (Homoptera: Aphididae). Environ. Entomol. 15, 4955.Google Scholar
Laughlin, R. (1965) Capacity for increase: a useful population statistic. J. Anim. Ecol. 34, 7791.Google Scholar
Lema, K. M. and Mahungu, N. M. (1983) Effects of fertilizer application on postembryonic development and reproduction of the cassava mealybug. Proceedings Second Triennal Symposium of the International Society for Tropical Root Crops-Africa Branch, 14–19 Aug. 1983, Douala, Cameroon, pp. 8788.Google Scholar
Le Rü, B., Tertuliano, M. and Calatayud, P. A. (1991) Les différentes catégories de résistance des plantes-hôtes de la cochenille du manioc Phenacoccus manihoti (Hom. Pseudococcidae): Perspectives d'études. Résumé du 4éme Atelier du Réseau CORAF Manioc: Biocénose des Principaux Ravageurs du Manioc et lutte Biologique. IITA-Bénin-Cotonou, 49 mars 1991. (Sous presse).Google Scholar
McClure, M. S. (1980) Foliar nitrogen: a basis for host suitability for elongate hemlock scale, Fiorinia externa (Homoptera, Diaspididae). Ecology 61, 7279.Google Scholar
McNeil, S. and Southwood, T. R. E. (1978) The role of nitrogen in the development of insect/plant relationships. In Biochemical Aspects of Plant and Animal Coevolution (Edited by Harbone, J.), pp. 7799. Academic Press, London.Google Scholar
Nadir, M. (1965) Contribution à la determination d'une fumure rationnelle des agrumes par l'analyse foliare. Al Awamia 16 (Rabat), 128147.Google Scholar
Neuenschwander, P., Hammond, W. N. O., Gutierrez, A. P., Cudjoe, A. R., Baumgaertner, J. U., Regev, U. and Adjakloe, R. (1989) Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae) by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 79, 579594.CrossRefGoogle Scholar
Neuenschwander, P., Hammond, W. N. O., Ajuonu, O., Gado, A., Echendu, N., Bolonon-Ganta, A. H., Allomasso, R. and Okon, I. (1990) Biological control of the cassava mealybug, Phenacoccus manihoti (Hom., Pseudococcidae) by Epidinocarsis lopezi (Hym., Encyrtidae) in West Africa, as influenced by climate and soil. Agr. Eco. Env. 32, 3955.Google Scholar
Njoku, B. O. and Odurukwe, S. O. (1987) Evaluation of nitrogen fertilizer sources and rates for a cassava-maize intercrop. In Tropical Root Crops: Root Crops and the African Food Crisis. Proceedings of the Third Triennal Symposium of the International Society for Tropical Root Crops-Africa Branch, 17–23 Aug. 1986, Owerri, Nigeria. (Edited by Terry, E. R., Akoroda, M. O. and Arene, O. B.), pp. 3033. International Development Research Centre, Ottawa.Google Scholar
Nzila, J. D. (1992) La pratique de l'écobuage dans la vallée du Niari (Congo); Ses conséquences sur l'evolution d'un sol ferralitique acide. Document ORSTOM Montpellier, no. 7.Google Scholar
Painter, R. H. (1951) Insect Resistance in Crops Plants. The University Press of Kansas, Lawrence, Kansas.CrossRefGoogle Scholar
Riedell, W. E. (1990) Tolerance of wheat to russian wheat aphids: nitrogen fertilization reduces yield loss. J. Plant Nutrition 13 (5), 579584.Google Scholar
Rodriguez, J. G. (1960) Nutrition of the host and reaction to pests. In Biological and Chemical Control of Plants and Animal Pests (Edited by Reitz, L. P.), pp. 149167. Am. Assoc. Adv. Sci. Publ. 61, Washington, DC.Google Scholar
Salama, H. S., Amin, A. H. and Hawash, M. (1972) Effect of nutrients supplied to Citrus seedling on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidospahes beckii (Newman) (Coccidae). Z. Angew. Entomol. 71, 395405.CrossRefGoogle Scholar
Schulthess, F., Baumgärtner, J. U., Delucchi, V. and Gutierrez, A. P. (1991) The influence of the cassava mealybug, Phenacoccus manihoti Mat. Ferr. (Horn. Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz. J. Appl. Entomol. 111, 155165.Google Scholar
Scott, R. A., Worrall, W. D. and Frank, W. A. (1991) Screening for resistance to russian wheat aphid in triticale. Crop Sci. 31, 3236.CrossRefGoogle Scholar
Smirnoff, W. A. and Valero, J. (1975) Effects a moyen de la fertilisation par urée ou par potassium sur Pinus banksiana L. et au comportement de ses insectes dévastateurs: tel que Neodiprion swainei et Toumeyella numismaticum. Can. J. Rech. For. 5, 236244.Google Scholar
Soltner, D. (1985) Les bases de la production végétale. Tome I: 1 sol et son amélioration. 12é edition. Coll. Sciences et Techniques Agricoles. Phytotech. gén.Google Scholar
Steyn, J. J. (1951) The effect of low calcium, phosphorus or nitrogen on the life cycle of red scale (Aonidiella aurantii Mask.). J. Entomol. Soc. Sth. Afr. 14, 165170.Google Scholar
Sumner, L. C., Dorchner, K. W., Ryan, J. D., Eikenbary, R. D., Johnson, R. C. and McNew, R. W. (1986) Reproduction of Schizaphis graminum (Homoptera: Aphidiae) on resistant and susceptible wheat genotypes during simulated drought stress induced with polyethylene glycol. Environ. Entomol. 15, 756762.Google Scholar
Thompson, W. L. (1941) Pest control studies. Effect of fertilizers on purple scale development. Report of the Florida Agricultural Experiment Station 1939–1940, pp. 158160.Google Scholar
Tingey, W. M. and Singh, S. R. (1980) Environmental factors influencing the magnitude and expression of resistance. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. E. and Jennings, P. R.), pp. 87113. John Wiley and Sons, New York.Google Scholar
Washburn, J. A., Grace, J. K. and Frankie, G. W. (1987) Population responses of Pulvinariella mesembryanthemi and Pulvinaria delottoi (Homoptera: Coccidae) to nitrogen and water conditions of their host plant. Environ. Entomol. 16, 286295.Google Scholar
Webster, J. A., Baker, C. A. and Porter, D. R. (1991) Detection and mechanisms of russian wheat aphid (Homoptera: Aphididae) resistance in barley. J. Econ. Entomol. 84, 669673.CrossRefGoogle Scholar
Williams, R. F. (1946) The physiology of plant growth with special reference to the concept of net assimilation rate. Ann. Bot. (London), 10, 4172.CrossRefGoogle Scholar