Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:37:44.110Z Has data issue: false hasContentIssue false

Bolgiano scale in confined Rayleigh–Taylor turbulence

Published online by Cambridge University Press:  25 November 2011

G. Boffetta*
Affiliation:
Dipartimento di Fisica Generale and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
F. De Lillo
Affiliation:
Dipartimento di Fisica Generale and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
A. Mazzino
Affiliation:
Dipartimento di Fisica, Università di Genova, INFN and CNISM, via Dodecaneso 33, 16146 Genova, Italy
S. Musacchio
Affiliation:
CNRS, Lab. J.A. Dieudonné UMR 6621, Parc Valrose, 06108 Nice, France
*
Email address for correspondence: boffetta@to.infn.it

Abstract

We investigate the statistical properties of Rayleigh–Taylor turbulence in a three-dimensional convective cell of high aspect ratio, in which one transverse side is much smaller that the others. By means of high-resolution numerical simulation we study the development of the turbulent mixing layer and the scaling properties of the velocity and temperature fields. We show that the system undergoes a transition from a three- to two-dimensional turbulent regime when the width of the turbulent mixing layer becomes larger than the scale of confinement. In the late stage of the evolution the convective flow is characterized by the coexistence of Kolmogorov–Obukhov and Bolgiano–Obukhov scaling at small and large scales, respectively. These regimes are separated by the Bolgiano scale, which is determined by the scale of confinement of the flow. Our results show that the emergence of the Bolgiano–Obukhov scaling in Rayleigh–Taylor turbulence is connected to the onset of an upscale energy transfer induced by the geometrical constraint of the flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
2. Biferale, L., Mantovani, F., Sbragaglia, M., Scagliarini, A., Toschi, F. & Tripiccione, R. 2010 High resolution numerical study of Rayleigh–Taylor turbulence using a thermal lattice Boltzmann scheme. Phys. Fluids 22, 115112.CrossRefGoogle Scholar
3. Boffetta, G., De Lillo, F. & Musacchio, S. 2010a Nonlinear diffusion model for Rayleigh–Taylor mixing. Phys. Rev. Lett. 104, 034505.CrossRefGoogle ScholarPubMed
4. Boffetta, G., De Lillo, F. & Musacchio, S. 2011 Shell model for quasi-two-dimensional turbulence. Phys. Rev. E 83 (6), 066302.CrossRefGoogle ScholarPubMed
5. Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427.CrossRefGoogle Scholar
6. Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2009 Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79 (6), 065301(R).CrossRefGoogle ScholarPubMed
7. Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010b Statistics of mixing in three-dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids 22, 035109.CrossRefGoogle Scholar
8. Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64 (12), 22262229.CrossRefGoogle Scholar
9. Cabot, W. 2006 Comparison of two- and three-dimensional simulations of miscible Rayleigh–Taylor instability. Phys. Fluids 18 (4), 045101.CrossRefGoogle Scholar
10. Cabot, W. H. & Cook, A. W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nature Phys. 2 (8), 562.CrossRefGoogle Scholar
11. Celani, A., Mazzino, A. & Vozella, L. 2006 Rayleigh–Taylor turbulence in two dimensions. Phys. Rev. Lett. 96 (13), 134504.CrossRefGoogle ScholarPubMed
12. Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.CrossRefGoogle ScholarPubMed
13. Chen, Q., Chen, S., Eyink, G. & Holm, D. D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.CrossRefGoogle Scholar
14. Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91 (11), 115001.CrossRefGoogle ScholarPubMed
15. Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.CrossRefGoogle Scholar
16. Dalziel, S. B., Linden, P. F. & Youngs, D. L. 1999 Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 148.CrossRefGoogle Scholar
17. Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
18. Isobe, H., Miyagoshi, T., Shibata, K. & Yokoyama, T. 2005 Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434 (7032), 478481.CrossRefGoogle ScholarPubMed
19. Kraichnan, R H & Montgomery, D 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43 (5), 547619.CrossRefGoogle Scholar
20. Lohse, D. & Xia, K. Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
21. Matsumoto, T. 2009 Anomalous scaling of three-dimensional Rayleigh–Taylor turbulence. Phys. Rev. E 79 (5), 055301(R).CrossRefGoogle ScholarPubMed
22. Métais, O., Bartello, P., Garnier, E., Riley, J. J. & Lesieur, M. 1996 Inverse cascade in stably-stratified rotating turbulence. Dyn. Atmos. Oceans 23, 193203.CrossRefGoogle Scholar
23. Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate rossby numbers and large Reynolds numbers. Phys. Fluids 21, 015108.CrossRefGoogle Scholar
24. Ngan, k., Straub, D. N. & Bartello, P. 2005 Aspect ratio effects in quasi-two-dimensional turbulence. Phys. Fluids 17, 125102.CrossRefGoogle Scholar
25. Obukhov, A. M. 1949 Structure of the temperature field in a turbulent current. Izv. Akad. Nauk SSSR Geogr. Geofiz. 13 (1), 5869.Google Scholar
26. Obukhov, A. 1959 Effect of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 125, 1246.Google Scholar
27. Ristorcelli, J. R. & Clark, T. T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.CrossRefGoogle Scholar
28. Schultz, D. M., Kanak, K. M. & Straka, J. M. 2006 The mysteries of mammatus clouds: observations and formation mechanisms. J. Atmos. Sci. 63, 24092435.CrossRefGoogle Scholar
29. Seychelles, F., Ingremeau, F., Pradere, C. & Kellay, H. 2010 From intermittent to nonintermittent behaviour in two dimensional thermal convection in a soap bubble. Phys. Rev. Lett. 105 (26), 264502.CrossRefGoogle Scholar
30. Shats, M., Byrne, D. & Xia, H. 2010 Turbulence decay rate as a measure of flow dimensionality. Phys. Rev. Lett. 105 (26), 264501.CrossRefGoogle ScholarPubMed
31. Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.CrossRefGoogle ScholarPubMed
32. Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
33. Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 24672470.CrossRefGoogle ScholarPubMed
34. Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081621.CrossRefGoogle Scholar
35. Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.CrossRefGoogle Scholar
36. Vladimirova, N. & Chertkov, M. 2009 Self-similarity and universality in Rayleigh–Taylor, Boussinesq turbulence. Phys. Fluids 21, 015102.CrossRefGoogle Scholar
37. Waite, M. L. & Bartello, P. 2006 The transition from geostrophic to stratified turbulence. J. Fluid Mech. 568, 89108.CrossRefGoogle Scholar
38. Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nature Phys. 7, 321324.CrossRefGoogle Scholar
39. Zhang, Jie & Wu, X. L. 2005 Velocity intermittency in a buoyancy subrange in a two-dimensional soap film convection experiment. Phys. Rev. Lett. 94 (23), 234501.CrossRefGoogle Scholar