Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:08:52.440Z Has data issue: false hasContentIssue false

Survival hydrodynamics

Published online by Cambridge University Press:  18 April 2012

M. S. Triantafyllou*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: mistetri@mit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fish escaping from predators exhibit amazing acceleration. The hydrodynamic mechanisms employed to power this acceleration are highlighted in the paper by Gazzola, van Rees & Koumoutsakos (J. Fluid Mech., this issue, vol. 698, 2012, pp. 5–17), showing that the fish bends its entire body and caudal fin, in order to entrap and then accelerate as large a mass of water as possible. It is also shown that hydrodynamic optimization drives the fast-start kinematics.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2012

References

1. Conte, J., Modarres-Sadeghi, Y., Watts, M. N., Hover, F. S. & Triantafyllou, M. S. 2010 A fast starting mechanical fish that accelerates at . Bioinsp. Biomim. 5, 19.CrossRefGoogle Scholar
2. Domenici, P. 2011 Webb scales fast-start maneuvers. J. Expl Biol. 214, 875877.CrossRefGoogle ScholarPubMed
3. Domenici, P. & Blake, R. 1997 The kinematics and performance of fish fast-start swimming. J. Expl Biol. 200, 11651178.CrossRefGoogle ScholarPubMed
4. Gazzola, M., van Rees, W. M. & Koumoutsakos, P. 2012 C-start: optimal start of larval fish. J. Fluid Mech. 698, 517.CrossRefGoogle Scholar
5. Harper, D. G. & Blake, R. 1991 Prey capture and the fast-start performance of northern pike (Esox Lucius). J. Expl Biol. 155, 175192.CrossRefGoogle Scholar
6. Mueller, U. K., van den Boogaart, J. G. M. & van Leeuwen, J. L. 2008 Patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Expl Biol. 211, 196205.CrossRefGoogle Scholar
7. Tytell, E. D. & Lauder, G. V. 2008 Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus . J. Expl Biol. 211, 33593369.CrossRefGoogle ScholarPubMed
8. Wakeling, J. M. & Johnston, I. A. 1998 Muscle power output limits fast-start performance in fish. J. Expl Biol. 201, 15051526.CrossRefGoogle ScholarPubMed
9. Webb, P. 1976 The effect of size on the fast-start performance of rainbow trout (Salmo gairdneri) and a consideration of piscivorous predator-prey interaction. J. Expl Biol. 65, 157177.CrossRefGoogle Scholar
10. Weihs, D. 1973 The mechanism of rapid starting of slender fish. Biorheology 10, 343350.CrossRefGoogle ScholarPubMed
11. Weihs, D. & Webb, P. 1984 Optimal avoidance and evasion tactics in predator-prey interactions. J. Theor. Biol. 106, 189206.CrossRefGoogle Scholar
12. Wibawa, M. S., Steele, S. C., Dahl, J. M., Rival, D. E., Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a vanishing wing. J. Fluid Mech. 695, 112134.CrossRefGoogle Scholar
13. Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 1999 Visualization of complex near-body transport processes in flexible-body propulsion. J. Flow Vis. 2, 143151.CrossRefGoogle Scholar
14. Zhu, Q., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 2002 Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 128.CrossRefGoogle Scholar