Using both the hydrogen-bubble flow-visualization technique and hot-wire-anemometry measurements, secondary vortices have been detected in the near-wake of circular cylinders and their characteristics studied over a Reynolds-number range of 1200–11000. The vortex-shedding characteristics of these secondary vortices clearly indicate that ‘transition waves’, detected in the cylinder near wake by Bloor (1964), and secondary vortices are identical phenomena. It is established that the non-dimensional shedding frequency of the secondary vortices demonstrates a 0.87 power-law relationship relative to Reynolds number, contrary to the 0.5 power-law reported by Bloor. The results suggest that the vortices result from a near-wake, free-shear instability which causes the separated cylinder boundary layer to roll up into the secondary vortices. Visual observations indicate that immediately following their formation the vortices undergo a strong three-dimensional distortion, which may provide the mechanism for the transition from laminar to turbulent Strouhal vortices.