Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T01:25:11.826Z Has data issue: false hasContentIssue false

Index Theory and Non-Commutative Geometry II. Dirac Operators and Index Bundles

Published online by Cambridge University Press:  30 November 2007

Moulay-Tahar Benameur
Affiliation:
benameur@math.univ-metz.fr UMR 7122 du CNRS, Université de Metz, Ile du Saulcy, Metz, France
James L. Heitsch
Affiliation:
heitsch@math.uic.edu, j-heitsch@northwestern.edu Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Mathematics Northwestern University
Get access

Abstract

When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define its Chern character in Haefliger cohomology and relate it to the Chern character of the K—theory index. This result gives a concrete connection between the topology of the foliation and the longitudinal index formula. Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A75. Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras, Asterisque 32/33 (1976), 4372Google Scholar
BH04. Benameur, M-T. and Heitsch, J. L., Corrigendum, K-Theory 36 (2005), 397402.Google Scholar
BH04. Benameur, M-T. and Heitsch, J. L., Index theory and Non-Commutative Geometry I. Higher Families Index Theory, K-Theory 33 (2004), 151183.Google Scholar
BH06. Benameur, M-T. and Heitsch, J. L., The Higher Harmonic Signatures for Foliations I: the Untwisted Case, submittedGoogle Scholar
BV87. Berline, N. and Vergne, M., A proof of Bismut local index theorem for a family of Dirac operators. Topology 26 (1987), 435463CrossRefGoogle Scholar
B86. Bismut, J.-M., The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs. Invent. Math. 83 (1986), 91151Google Scholar
Con79. Connes, A., Sur la théorie de l'intégration non commutative. Lect. Notes in Math. 725, 1979Google Scholar
Con81. Connes, A.. A survey of foliations and operator algebras. Operator algebras and applications, Part I, Proc. Sympos. Pure Math 38, Amer. Math. Soc., (1982), 521628CrossRefGoogle Scholar
Con85. Connes, A.. Noncommutative differential geometry. Inst. Hautes Etudes Sci. Publ. Math. No. 62 (1985), 257360Google Scholar
Con86. Connes, A.. Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras (Kyoto, 1983), 52144, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986Google Scholar
Con94. Connes, A., Noncommutative Geometry, Academic Press, New York, 1994Google Scholar
CM91. Connes, A. and Moscovici, H., Cyclic cohomology and the Novikov conjecture for hyperbolic groups, Topology 29 (1990), 345388CrossRefGoogle Scholar
CS84. Connes, A., and Skandalis, G.. The longitudinal index theorem for foliations, Publ. RIMS Kyoto 20 (1984), 11391183Google Scholar
CQ97. Cuntz, J. and Quillen, D., Excision in bivariant periodic cyclic cohomology. Invent. Math. 127 (1997), no. 1, 6798Google Scholar
GL03. Gorokhovsky, A., and Lott, J.. Local index theory over étale groupoids, J. Reine Angew. Math. 560 (2003), 151198Google Scholar
GL05. Gorokhovsky, A., and Lott, J.. Local index theory over foliation groupoids, Adv. Math. 204 (2006), 413447Google Scholar
H80. Haefliger, A.. Some remarks on foliations with minimal leaves, J. Diff. Geo. 15 (1980), 269284Google Scholar
He95. Heitsch, J. L.. Bismut superconnections and the Chern character for Dirac operators on foliated manifolds, K-Theory 9 (1995), 507528CrossRefGoogle Scholar
HL90. Heitsch, J. L. and Lazarov, C.. A Lefschetz theorem for foliated manifolds, Topology 29 (1990), 127162CrossRefGoogle Scholar
HL99. Heitsch, J. L. and Lazarov, C.. A general families index theorem, K-Theory 18 (1999), 181202CrossRefGoogle Scholar
HL02. Heitsch, J. L. and Lazarov, C.. Riemann-Roch-Grothendieck and torsion for foliations J. Geo. Anal. 12 (2002), 437468CrossRefGoogle Scholar
K91. Kordyukov, Yu. Lp-theory of elliptic differential operators on manifolds of bounded geometry Acta Appl. Math. 23 (1991), no. 3, 223260CrossRefGoogle Scholar
K95. Kordyukov, Yu. Functional calculus for tangentially elliptic operators on foliated manifolds. Analysis and Geometry in Foliated Manifolds (Santiago de Compostela, 1994), 113136, World Sci. Publishing, River Edge, NJ, 1995Google Scholar
LM89. Lawson, H. B. and Michelson, M.-L., Spin geometry, Princeton Math. Series 38, Princeton, 1989Google Scholar
MN96. Melrose, R. and Nistor, V., Homology of pseudodifferential operators I (manifolds with boundary), to appear in Amer. J. Math.Google Scholar
Nis93. Nistor, V., A bivariant Chern-Connes character. Ann. of Math. (2) 138 (1993), no. 3, 555590CrossRefGoogle Scholar
NWX96. Nistor, V., Weinstein, A. and Xu, P., Pseudodifferential operators on differential groupoids, Pacific J. Math. 189 (1999), no. 1, 117152CrossRefGoogle Scholar
Ph87. Phillips, J., The holonomic imperative and the homotopy groupoid of a foliation, Rocky Mountain J. of Math. 17 (1987) no. 1, 151165Google Scholar
RS80. Reed, M., and Simon, B.. Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, New York, 1980Google Scholar
S92. Shubin, M. A., Spectral theory of elliptic operators on noncompact manifolds. Methodes semi-classiques, Vol. 1 (Nantes, 1991). Asterisque No. 207 (1992), 35108Google Scholar