No CrossRef data available.
Article contents
Hermitian periodicity and cohomology of infinite orthogonal groups
Published online by Cambridge University Press: 23 May 2013
Abstract
As an application of our papers in hermitian K-theory, in favourable cases we prove the periodicity of hermitian K-groups with a shorter period than previously obtained. We also compute the homology and cohomology with field coeffcients of infinite orthogonal and symplectic groups of specific rings of integers in a number field.
- Type
- Research Article
- Information
- Journal of K-Theory , Volume 12 , Issue 1: Nanjing Special Issue on K-theory, number theory and geometry , August 2013 , pp. 203 - 211
- Copyright
- Copyright © ISOPP 2013
References
1.Berrick, A. J. and Karoubi, M.. Hermitian K-theory of the integers. Amer. J. Math. 127 (2005), 785–823.CrossRefGoogle Scholar
2.Berrick, A. J., Karoubi, M., and Østvær, P. A.. Hermitian K-theory and 2-regularity for totally real number fields. Math. Annalen 349 (2011), 117–159.Google Scholar
3.Berrick, A. J., Karoubi, M., Østvær, P. A. and Schlichting, M.. The homotopy fixed point theorem and the Quillen-Lichtenbaum conjecture in hermitian K-theory. ArXiv Math:1011.4977.Google Scholar
4.Berrick, A. J., Karoubi, M., and Østvær, P. A.. Periodicity of hermitian K-groups. Journal of K-Theory 7 (2011), 429–493.Google Scholar
5.Borel, A.. Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4) 7 (1975), 235–272.CrossRefGoogle Scholar
6.and, Z. FiedorowiczPriddy, S.. Homology of Classical Groups over Finite Fields and Their Associated Infinite Loop Spaces. Lecture Notes in Math. 674, Springer, (New York, 1978).Google Scholar
7.Karoubi, M.. Le théorème fondamental de la K-théorie hermitienne. Ann. of Math. (2), 112 (1980), 259–282.CrossRefGoogle Scholar
8.Karoubi, M.. Relations between algebraic K-theory and hermitian K-theory. Journal of Pure and Applied Algebra 34 (1984), 259–263.CrossRefGoogle Scholar
9.McCleary, J.. A User's Guide to Spectral Sequences. Cambridge Studies in Advanced Math. 58, Cambridge Univ. Press, (Cambridge, 2001).Google Scholar
10.Milnor, J. & Husemoller, D.: Symmetric Bilinear Forms, Ergeb. Math. 73, Springer, (Berlin, 1973).CrossRefGoogle Scholar
11.Quillen, D.. Letter from Quillen to Milnor on Im(πi(O) → πsi → Ki(ℤ)). In Algebraic K-Theory, Lecture Notes in Math. 551, Springer (New York, 1976), 182–188.Google Scholar
12.Switzer, R. M.. Algebraic Topology – Homology and Homotopy. Classics in Math., Springer, 2002.Google Scholar