No CrossRef data available.
Article contents
Kunneth theorems and unstable operations in 2-adic KO-cohomology
Published online by Cambridge University Press: 30 November 2007
Abstract
We develop Kunneth theorems and obtain detailed results on unstable operations in 2-adic KO-cohomology and, more generally, in united 2-adic K-cohomology. These results are needed for work on the K-localizations of spaces at the prime 2 and should be of independent interest. Our proofs of relations for unstable operations rely on Atiyah's Real K-theory and on a convenient mod 2 simplification of 2-adic KO-cohomology.
- Type
- Research Article
- Information
- Copyright
- Copyright © ISOPP 2008
References
2.Atiyah, M.F., Vector bundles and the Kunneth formula, Topology 1 (1962), 245–248CrossRefGoogle Scholar
3.Atiyah, M.F., K-theory and reality, Quart. J. Math. Oxford 17(1966), 367–386CrossRefGoogle Scholar
4.Bendersky, M., Davis, D.M., and Mahowald, M., Stable geometric dimension of vector bundles over even-dimensional real projective spaces, Trans. Amer. Math. Soc., 358(2006), 1585–1602CrossRefGoogle Scholar
5.Boersema, J.L., Real C*-algebras, united K-theory, and the Kunneth formula, K-Theory 26(2002), 345–402CrossRefGoogle Scholar
6.Bousfield, A.K., A classification of K-local spectra, J. Pure Appl. Algebra 66(1990), 121–163CrossRefGoogle Scholar
7.Bousfield, A.K., On K*-local stable homotopy theory, Adams Memorial Symposium on Algebraic Topology, Vol.2, London Math. Soc. Lecture Note Ser. 179, Cambridge University Press, 1992, pp.23–33CrossRefGoogle Scholar
8.Bousfield, A.K., On X-rings and the K-theory of infinite loop spaces, K-Theory 10(1996), 1–30CrossRefGoogle Scholar
9.Bousfield, A.K., On p-adic λ-rings and the K-theory of H-spaces, Mathematisches Zeitschrift 223(1996), 483–519CrossRefGoogle Scholar
10.Bousfield, A.K., The K-theory localizations and v1-periodic homotopy groups of H-spaces, Topology 38(1999), 1239–1264CrossRefGoogle Scholar
11.Bousfield, A.K., On the 2-primary v1-periodic homotopy groups of spaces, Topology 44(2005), 381–413CrossRefGoogle Scholar
12.Bousfield, A.K., On the 2-adic K-localizations of H-spaces, Homology, Homotopy, and Applications 9(2007), 331–366CrossRefGoogle Scholar
13.Crabb, M.C., ℤ/2-homotopy theory, London Math. Soc. Lecture Note Ser. 44, Cambridge University Press, 1980Google Scholar
14.Davis, D.M., Representation types and 2-primary homotopy groups of certain compact Lie groups, Homology, Homotopy, and Applications 5(2003), 297–324CrossRefGoogle Scholar
15.Minami, H., The real K-groups of SO.(n) for n ≡ 3,4 and 5 mod8, Osaka J. Math. 25(1988), 185–211Google Scholar
16.Mislin, G., Localization with respect to K-theory, J. Pure Appl. Algebra 10(1977), 201–213CrossRefGoogle Scholar
17.Radford, D.E., Pointed Hopf algebras are free over Hopf subalgebras, J. Algebra 45(1977), 266–273CrossRefGoogle Scholar
18.Ribes, L. and Zalesskii, P., Profinite Groups, Springer-Verlag, Berlin, 2000CrossRefGoogle Scholar
19.Seymour, R.M., The Real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24(1973), 7–30CrossRefGoogle Scholar
21.Takeuchi, M., A correspondence between Hopf ideals and sub-Hopf algebras Manuscripta Math. 7(1972), 251–170CrossRefGoogle Scholar