Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T18:37:35.356Z Has data issue: false hasContentIssue false

Conversion of uniform colloidal Cu2O spheres to copper in polyols

Published online by Cambridge University Press:  06 January 2012

Zorica Crnjak Orel
Affiliation:
Clarkson University, Center for Advanced Materials Processing, Potsdam, New York 13599
Egon Matijević
Affiliation:
Clarkson University, Center for Advanced Materials Processing, Potsdam, New York 13599
Dan V. Goia
Affiliation:
Clarkson University, Center for Advanced Materials Processing, Potsdam, New York 13599
Get access

Abstract

Colloidal copper particles with a high degree of crystallinity were obtained by heating solutions of copper(II) acetate in ethylene glycol (EG) and tetraethylene glycol (TEG). The formation mechanism of copper particles involved first the formation of sparingly soluble nano-sized copper(I) oxide, which aggregated into uniform spheres. On prolonged heating the Cu2O particles were reduced to nano-sized copper crystallites followed by their sintering to colloidal metal. The conversion of the copper(I) oxide to metallic copper proceeds uniformly within the body of each particle.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, J.K.A., Chem. Rev. 75, 291 (1975).CrossRefGoogle Scholar
Mills, G.M. and Cusumano, J.A., in Encyclopedia of Chemical Technology (Wiley Interscience, New York, 1979), pp. 1661.Google Scholar
Weiser, H.B., Inorganic Colloid Chemistry (Wiley, New York, 1933), Vol. 1, pp. 131142.Google Scholar
Modern Developments in Powder Metallurgy, edited by Hausner, H.H. (Plenum Press, New York, 1966), Vol. 1.Google Scholar
Larry, J.R., Rosenberg, R.M., and Uhler, R.G., IEEE Transactions on Components Hybrids and Manufacturing Technology (IEEE, Piscataway, NJ, 1980), pp. 168174.Google Scholar
Hamer, D.W. and Biggers, J.V., Thick Film Hybrid Microcircuit Technology (Wiley Interscience, New York, 1972).Google Scholar
Masussek, L.I. and Glang, R., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).Google Scholar
Vosson, J.L. and Kern, W., Thin Film Processes (Academic Press, New York, 1970).Google Scholar
Glavee, G.N., Klabunde, J., C.M. Sorensen, and G.C. Hadjipanayis, Langmuir 10, 4276 (1994).CrossRefGoogle Scholar
Qi, L., Ma, J., and Shen, J., J. Colloid Interface Sci. 186, 498 (1997).Google Scholar
Hsu, W.P., Yu, R., and Matijevic, E., Powder Technol. 63, 265 (1990).Google Scholar
Huang, C.H. and Sheen, R.S., Mater. Lett. 30, 357 (1997).CrossRefGoogle Scholar
Filankembo, A. and Pileni, M.P., Appl. Surface Sci. 164, 260 (2000).CrossRefGoogle Scholar
Fie´vet, F., in Fine Particles. Synthesis, Characterization and Mechanisms of Growth, edited by Sugimoto, T. (Marcel Dekker, New York, 2000), pp. 460496.Google Scholar
Fie´vet, F., Largier, J.P., and Figlarz, M., MRS Bull. 14, 29 (1989).CrossRefGoogle Scholar
Fie´vet, F., Largier, J.P., Blin, B., Beaudoin, B., and Figlarz, M., Solid State Ionics 32/33, 198 (1989).Google Scholar
Ducamp-Seanguesa, C., Herrera-Urbina, R., and Figlarz, M., J. Solid State Chem. 100, 272 (1992).Google Scholar
Figlarz, M., Fie´vet, F., and Largier, J.P., U.S. Patent No. 4 539 041 (1985).Google Scholar
Fie´vet, F., Fievet-Vincent, F., Lagier, J.P., Dumont, B., and Figlarz, M., J. Mater. Chem. 3, 627 (1993).Google Scholar
Shono, T., Matsumura, Y., Hashimoto, T., Hibino, K., Hamaguchi, H., and Aoki, T., J. Am. Chem. Soc. 97, 2546 (1975).Google Scholar
Ernst, S., Heitbaum, J., and Hamaan, C.H., J. Electroanal. Chem. 173, 100 (1979).Google Scholar
Rao, M.L., J. Electroanal. Chem. 334, 116 (1969).Google Scholar
Hsu, W.P., Ro¨nnquist, L., Matijevic´, E., Langmuir 4, 26 (1988).Google Scholar
M. Ocan˜a and E. Matijevic´, J. Mater. Res. 5, 1083 (1990).CrossRefGoogle Scholar
Goia, D.V. and Matijevic, E., Colloids Surf. 146, 139 (1999).Google Scholar
Privman, V., Goia, D.V., Park, J., and Matijevic´, E., J. Colloid Interface Sci. 213, 36 (1999).Google Scholar
Libert, S., Gorshkov, V., Privman, V., Goia, D.V., and Matijevic, E.´, Adv. Colloid Interface Sci. 102–102c, 169 (2003).CrossRefGoogle Scholar
Henglein, A., J. Phys. Chem. B 104, 1206 (2000).Google Scholar