Static-gap, single-spark tests were used to investigate the arc erosion behavior of newly developed silicon carbide and alumina particle reinforced silver matrix composites (SiCp/Ag, Al2O3p/Ag). Craters and hills exist on the surfaces of eroded silver matrix composites, and their depths and sizes decrease as the particle content increases and the particle size decreases. Obvious melting, flow, severe splash of molten silver, and the segregation of particles are present on the surfaces of eroded composites containing low volume percents of large particles. Easier silver flow results in smooth surfaces and reduces the total surface areas of the eroded composites containing large particles. The flow and splash of silver decreased with increasing particle content and decreasing particle size, exhibiting a better erosion resistance to single-spark tests. The static-gap, single-spark erosion behavior of silver matrix composites is dominated by the flow and splash of molten composites. A high viscosity of the liquids provides the composites a good arc erosion resistance.