Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T03:23:33.837Z Has data issue: false hasContentIssue false

Silica-encapsulated magnetic nanoparticles formed by a combined arc evaporation/chemical vapor deposition technique

Published online by Cambridge University Press:  06 January 2012

Kevin L. Klug
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Vinayak P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D. Lynn Johnson
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

A multistep technique has been developed for the generation of metallic/alloy nanoparticles coated with amorphous silica. As a proof of concept, an inert-gas blown-arc geometry was used to create nanoparticles from a bulk nickel source, and silica coating formation was accomplished via tetraethyloxysilane (TEOS) decomposition over the nanoparticles in an adjacent chemical vapor deposition chamber. The composite particles exhibit resistance to hydrochloric acid attack over extended times, thereby confirming the protective nature of the silica coating, and magnetic measurements indicate a superparamagnetic transition temperature of 41 K. TEOS flow rate was found to have a profound effect on particle morphology, and individually coated dispersed particles were observed for the intermediate flow rate studied. These results, combined with the well-established field of silica functionalization, offer the possibility that a variety of industrially significant coated magnetic nanostructures may be synthesized with this versatile approach.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meza, M., in Scientific and Clinical Applications of Magnetic Carriers, edited by Hafeli, U., Schutt, W., Teller, J., and Zborowski, M. (Plenum Press, New York, 1997), pp. 303309.CrossRefGoogle Scholar
Bulte, J.W.M. and Brooks, R.A., in Scientific and Clinical Applications of Magnetic Carriers, edited by Hafeli, U., Schutt, W., Teller, J., and Zborowski, M. (Plenum Press, New York, 1997), pp. 527543.CrossRefGoogle Scholar
Jordan, A., Wust, P., Scholz, R., Faehling, H., Krause, J., and Felix, R., in Scientific and Clinical Applications of Magnetic Carriers, edited by Hafeli, U., Schutt, W., Teller, J., and Zborowski, M. (Plenum Press, New York, 1997), pp. 569595.CrossRefGoogle Scholar
Renshaw, P.F., Owen, C.S., McLaughlin, A.C., Frey, T.G., Leigh, J.J.S., Magn. Reson. Med. 3, 217 (1986).CrossRefGoogle Scholar
Rosenweig, R.E., Chem. Eng. Prog. 85, 53 (1989).Google Scholar
Onodera, S., Kondo, H., and Kawana, T., MRS Bull. 21(9), 35 (1996).CrossRefGoogle Scholar
O’Grady, K., White, R.L., and Grundy, P.J., J. Magn. Magn. Mater. 177–181, 886 (1998).CrossRefGoogle Scholar
White, R.L., New, R.M.H., and Pease, R.F.W., IEEE Trans. Magn. 33, 990 (1997).CrossRefGoogle Scholar
Seraphin, S., Zhou, D., Jiao, J., Withers, J.C., and Loutfy, R., Appl. Phys. Lett. 63, 2073 (1993).CrossRefGoogle Scholar
Bandow, S. and Saito, Y., Jpn. J. Appl. Phys. 32, L1677 (1993).Google Scholar
Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 54, 1849 (1993).CrossRefGoogle Scholar
Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y., J. Phys. Chem. 98, 6696 (1994).CrossRefGoogle Scholar
Majetich, S.A., Artman, J.O., McHenry, M.E., Nuhfer, N.T., Staley, S.W., Phys. Rev. B: Condens. Matter. 48, 16845 (1993).CrossRefGoogle Scholar
Saito, Y., Carbon 33, 979 (1995).CrossRefGoogle Scholar
Seraphin, S., J. Electrochem. Soc. 142, 290 (1995).CrossRefGoogle Scholar
Dravid, V.P., Teng, M-H., Host, J.J., Elliott, B.R., Johnson, D.L., Mason, T.O., Weertman, J.R., and Hwang, J-H., United States Patent No. 5 472 749 (5 December 1995).Google Scholar
Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B., Hwang, J., Johnson, D.L., Mason, T.O., and Weertman, J.R., Nature 374, 602 (1995).CrossRefGoogle Scholar
Host, J.J., Teng, M.H., Elliott, B.R., Hwang, J-H., Mason, T.O., Johnson, D.L., Dravid, V.P., J. Mater. Res. 12, 1268 (1997).CrossRefGoogle Scholar
Klug, K.L., Ph.D. Dissertation, Northwestern University (2002).Google Scholar
Ennas, G., Mei, A., Musinu, A., Piccaluga, G., Pinna, G., and Solinas, S., J. Non-Cryst. Solids 232–234, 587 (1998).CrossRefGoogle Scholar
Wang, G. and Harrison, A., J. Colloid Interface Sci. 217, 203 (1999).CrossRefGoogle Scholar
Ohmori, M. and Matijevic, E., J. Colloid Interface Sci. 160, 288 (1993).CrossRefGoogle Scholar
Hui, S., Zhang, Y.D., Xiao, T.D., Wu, M., Ge, S., Hines, W.A., Budnick, J.I., Yacaman, M.J., Troiani, H.E., in Nanophase and Nanocomposite Materials IV, edited by Komarneni, S., Vaia, R.A., Lu, G.Q., Matsushita, J-I., and Parker, J.C. (Mater. Res. Soc. Symp. Proc. 703, Warrendale, PA, 2002).Google Scholar
Philipse, A.P., Bruggen, M.P.B.v., and Pathmamanoharan, C., Langmuir 10, 92 (1994).CrossRefGoogle Scholar
Zachariah, M.R., Shull, R.D., McMillin, B.K., Biswas, P., in Nanotechnology Molecularly Designed Materials, edited by Chow, G-M. and Gonsalves, K.E. (American Chemical Society, Washington, DC, 1996), p. 42.CrossRefGoogle Scholar
Liu, Q., Xu, Z., Finch, J.A., and Egerton, R., Chem. Mater. 10, 3936 (1998).CrossRefGoogle Scholar
Hui, S., Zhang, Y.D., Xiao, T.D., Wu, M., Ge, S., Hines, W.A., Budnick, J.I., Yacaman, M.J., Troiani, H.E., in Nanophase and Nanocomposite Materials IV, edited by Komarneni, S., Vaia, R.A., Lu, G.Q., Matsushita, J-I., and Parker, J.C. (Mater. Res. Soc. Symp. Proc. 703, Warrendale, PA, 2002).Google Scholar
Liz-Marzan, L.M., Giersig, M., and Mulvaney, P., Langmuir 12, 4329 (1996).CrossRefGoogle Scholar
Radloff, C. and Halas, N.J., Appl. Phys. Lett. 79, 674 (2001).CrossRefGoogle Scholar
Ung, T., Liz-Marazan, L.M., Mulvaney, P., Langmuir 14, 3740 (1998).CrossRefGoogle Scholar
Li, T., Moon, J., Morrone, A.A., Mecholsky, J.J., Talham, D.R., and Adair, J.H., Langmuir 15, 4328 (1999).CrossRefGoogle Scholar
Yang, C-S., Kauzlarich, S.M., and Wang, Y.C., Chem. Mater. 11, 3666 (1999).CrossRefGoogle Scholar
Patil, A.N., Andres, R.P., and Otsuka, N., J. Phys. Chem. 98, 9247 (1994).CrossRefGoogle Scholar
Shih, W-H., Kisailus, D., and Wei, Y., Mater. Lett. 24, 13 (1995).CrossRefGoogle Scholar
Beck, C., Hartl, W., and Hempelmann, R., Angew. Chem., Int. Ed. 38, 1297 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
Bourgeat-Lami, E., Espiard, P., and Guyot, A., Polymer 36, 4385 (1995).CrossRefGoogle Scholar
Deng, G., Markowitz, M.A., Kust, P.R., and Gaber, B.P., Mater. Sci. Eng. C 11, 165 (2000).CrossRefGoogle Scholar
Goodwin, J.W., Harbron, R.S., and Reynolds, P.A., Colloid Polym. Sci. 268, 766 (1990).CrossRefGoogle Scholar
Qhobosheane, M., Santra, S., Zhang, P., and Tan, W., Analyst 126, 1274 (2001).CrossRefGoogle Scholar
Spange, S. and Reuter, A., Langmuir 15, 141 (1999).CrossRefGoogle Scholar
Spange, S., Prog. Polym. Sci. 25, 781 (2000).CrossRefGoogle Scholar
Vincent, B., Chem. Eng. Sci. 48, 429 (1993).CrossRefGoogle Scholar
Westcott, S.L., Oldenburg, S.J., Lee, T.R., and Halas, N.J., Langmuir 14, 5396 (1998).CrossRefGoogle Scholar
Graf, C. and Blaaderen, A.v., Langmuir 18, 524 (2002).CrossRefGoogle Scholar
Saoudi, B., Jammul, N., Chehimi, M.M., McCarthy, G.P., Armes, S.P., J. Colloid Interface Sci. 192, 269 (1997).CrossRefGoogle Scholar
Voigt, I., Simon, F., Esthel, K., Spange, S., and Friedrich, M., Langmuir 17, 8355 (2001).CrossRefGoogle Scholar
Klug, K.L., Johnson, D.L., and Dravid, V.P., in Advanced Hard and Soft Magnetic Materials, edited by Coey, L.H.L.M., Ma, B-M., Schrefl, T., Schultz, L., Fidler, J., Harris, V.G., Hasegawa, R., Inoue, A., and McHenry, M. (Mater. Res. Soc. Symp. Proc. 577, Warrendale, PA, 1999), pp. 405408.Google Scholar