Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T02:52:34.616Z Has data issue: false hasContentIssue false

Solid-state synthesis of multiwalled carbon nanotubes

Published online by Cambridge University Press:  06 January 2012

S. P. Doherty
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D. B. Buchholz
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
B-J. Li
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, 195–5 Chung Hsing Road, Section 4 Chutung, Hsinchu, Taiwan
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

A modified high-temperature arc furnace was used to produce carbon nanotubes from carbon black by a solid-state transformation without a catalyst. The layer of carbon nanotubes thus formed was nearly pure with only a minor amount of carbon black particles. The properties of these nanotubes were found to be very similar to those produced by the conventional arc synthesis. Based on this process, a mechanism for the growth of these nanotubes is proposed. In addition, field-emission properties of these nanotubes were comparable to the properties of arc-grown carbon nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S., Nature 354, 56 (1991).Google Scholar
Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M., Nature 381, 678 (1996).Google Scholar
Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C., Nature 386, 474 (1997).CrossRefGoogle Scholar
Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., and Chang, R.P.H., Appl. Phys. Lett. 72, 2912 (1998).Google Scholar
Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., and Smalley, R.E., Nature 384, 147 (1996).Google Scholar
Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature 386, 377 (1997).CrossRefGoogle Scholar
Yao, Z., Postma, H.W.C., Balents, L., and Dekker, C., Nature 402, 273 (1999).Google Scholar
Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., Science 287, 637 (2000).CrossRefGoogle Scholar
Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).Google Scholar
Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 243, 49 (1995).Google Scholar
Kong, J., Cassell, A.M., and Dai, H.J., Chem. Phys. Lett. 292, 567 (1998).Google Scholar
Thien-Nga, L., Bonard, J.M., Gaal, R., Forro, L., and Hernadi, K., Appl. Phys. Lett. 80, 850 (2002).Google Scholar
Setlur, A.A., Doherty, S.P., Dai, J.Y., and Chang, R.P.H., Appl. Phys. Lett. 76, 3008 (2000).CrossRefGoogle Scholar
Calderon-Moreno, J.M. and Yoshimura, M., Mater. Trans. 42, 1681 (2001).Google Scholar
Moreno, J.M.C., Swamy, S.S., Fujino, T., and Yoshimura, M., Chem. Phys. Lett. 329, 317 (2000).Google Scholar
Sen, R., Suzuki, S., Kataura, H., and Achiba, Y., Chem. Phys. Lett. 349, 383 (2001).CrossRefGoogle Scholar
Geohegan, D.B., Schittenhelm, H., Fan, X., Pennycook, S.J., Puretzky, A.A., Guillorn, M.A., Blom, D.A., and Joy, D.C., Appl. Phys. Lett. 78, 3307 (2001).Google Scholar
Wong, T.S., Wang, C.T., Chen, K.H., Chen, L.C., and Ma, K.J., Diamond Relat. Mater. 10, 1810 (2001).CrossRefGoogle Scholar
Biro, L.P., Ehlich, R., Tellgmann, R., Gromov, A., Krawez, N., Tschaplyguine, M., Pohl, M.M., Zsoldos, E., Vertesy, Z., Horvath, Z.E., Campbell, E.E.B., Chem. Phys. Lett. 306, 155 (1999).Google Scholar
Grobert, N., Terrones, M., Osborne, A.J., Terrones, H., Hsu, W.K., Trasobares, S., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Appl. Phys. A, Mater. Sci. Proc. 67, 595 (1998).CrossRefGoogle Scholar
Chen, Y., Chadderton, L.T., Williams, J.S., and Gerald, J.F., inGoogle Scholar
Metastable, Mechanically Alloyed and Nanocrystalline Materials, Parts 1 and 2 (Trans Tech Publications Inc., Vetikon-Zurich, Switzerland, 2000), Vol. 343–3, p. 63.Google Scholar
Chadderton, L.T. and Chen, Y., Phys. Lett. A 263, 401 (1999).CrossRefGoogle Scholar
Adhikari, B., Ghosh, A.K., and Maiti, S., J. Polym. Mater. 17, 101 (2000).Google Scholar
Karasek, L. and Sumita, M., J. Mater. Sci. 31, 281 (1996).CrossRefGoogle Scholar
Donnet, J.B., Carbon 20, 266 (1982).Google Scholar
Zhang, Q.L., Obrien, S.C., Heath, J.R., Liu, Y., Curl, R.F., Kroto, H.W., Smalley, R.E., J. Phys. Chem. 90, 525 (1986).Google Scholar
Berezkin, V.I., Phys. Solid State 42, 580 (2000).CrossRefGoogle Scholar
Berezkin, V.I., Phys. Status Solidi B, Basic Res. 226, 271 (2001).Google Scholar
Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).Google Scholar
Wang, X.K., Lin, X.W., Mesleh, M., Jarrold, M.F., Dravid, V.P., Ketterson, J.B., and Chang, R.P.H., J. Mater. Res. 10, 1977 (1995).CrossRefGoogle Scholar
Lauerhaas, J.M., Dai, J.Y., Setlur, A.A., and Chang, R.P.H., J. Mater. Res. 12, 1536 (1997).Google Scholar
Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).Google Scholar
Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Chapelle, M.L. dela, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature 388, 756 (1997).Google Scholar
Gamaly, E.G. and Ebbesen, T.W., Phys. Rev. B, Condens. Matter 52, 2083 (1995).Google Scholar
Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E., J. Phys. Chem. 99, 10694 (1995).CrossRefGoogle Scholar
Charlier, J.C., DeVita, A., Blase, X., Car, R., Science 275, 646 (1997).CrossRefGoogle Scholar
Dai, J.Y., Lauerhaas, J.M., Setlur, A.A., and Chang, R.P.H., Chem. Phys. Lett. 258, 547 (1996).Google Scholar
Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., and Chang, R.P.H., Appl. Phys. Lett. 69, 345 (1996).Google Scholar
Wang, Z.L., Gao, R.P., Heer, W.A. de, and Poncharal, P., Appl. Phys. Lett. 80, 856 (2002).Google Scholar
Smalley, R.E., Mater. Sci. Eng. B, Solid State Mater. Adv. Technol. 19, 1 (1993).CrossRefGoogle Scholar