Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T23:55:26.564Z Has data issue: false hasContentIssue false

A study on the growth and structure of titania nanotubes

Published online by Cambridge University Press:  03 March 2011

Wenzhong Wang
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Maggie Paulose
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes*
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Qinglei Wang
Affiliation:
Department of Materials Science and Engineering, and Materials Research Institute, 221 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, and Materials Research Institute, 221 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: cgrimes@engr.psu.edu
Get access

Abstract

Titania nanotubes synthesized by a soft chemical process are described, having diameters of 8 nm to 10 nm and lengths ranging from approximately 0.1 μm to 1 μm. X-ray diffraction studies show the structure of the as-prepared nanotubes is the same as that of the starting anatase TiO2 nanoparticles. Energy-dispersive x-ray analysis and electron energy loss spectroscopy studies further indicate that the as-prepared nanotubes are composed of titania. Studies using transmission electron microscopy verified that the nanotubes are formed during alkali treatment, with subsequent acidic treatments having no effect on nanotube structure and shape.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A.: Adv. Mater. 15, 624 (2003).CrossRefGoogle Scholar
2Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A. and Dickey, E.C.: J. Mater. Res. 17, 1162 (2002).CrossRefGoogle Scholar
3Zou, J., Pu, L., Bao, X. and Feng, D.: Appl. Phys. Lett. 80, 1079 (2002).CrossRefGoogle Scholar
4Pu, L., Bao, X., Zou, J. and Feng, D.: Angewante Chemie 113, 1538 (2001).3.0.CO;2-1>CrossRefGoogle Scholar
5Gong, D.W., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W.C. and Dickey, E.C.: J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
6Muhr, H-J., Krumeich, F., Schonholzer, U.P., Bieri, F., Niederberger, M., Gauckler, L.J. and Nesper, R.: Adv. Mater. 12, 231 (2000).3.0.CO;2-D>CrossRefGoogle Scholar
7Rao, C.N.R., Satishkumar, B.C. and Govindaraj, A.: Chem. Commun. 16, 1581 (1997).CrossRefGoogle Scholar
8Hoyer, P.: Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
9Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
10Zhang, Q.H., Gao, L., Sun, J. and Zheng, S.: Chem. Lett. 31, 226 (2002).CrossRefGoogle Scholar
11Adachi, M., Murata, Y., Harada, M. and Yoshikawa, S.: Chem. Lett. 29, 942 (2000).CrossRefGoogle Scholar
12Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y.R. and Gedanken, A.: Chem. Commun. 24, 2616 (2001).CrossRefGoogle Scholar
13Imai, H., Takei, Y., Shimizu, K., Matsuda, M. and Hirashima, H.: J. Mater. Chem. 9, 2971 (1999).CrossRefGoogle Scholar
14Zhang, S.L., Zhou, J.F., Zhang, Z.J., Du, Z.L. and Vorontsov, A.V.: Chinese Sci. Bull. 45, 1104 (2000).Google Scholar
15Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y. and Peng, L.M.: Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
16Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
17Varghese, O.K., Paulouse, M., Gong, D., Grimes, C.A. and Dickey, E.C.: J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
18Sun, X. and Li, Y.: Chem. Eur. J. 9, 2229 (2003).CrossRefGoogle Scholar
19Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y. and Wang, N.: Appl. Phys. Lett. 82, 281 (2003).CrossRefGoogle Scholar
20Feist, T. and Davies, P.: J. Solid State Chem. 101, 275 (1992).CrossRefGoogle Scholar
21Chen, Q., Du, G.G., Zhang, S. and Peng, L.M.: Acta Cryst. B 58, 587 (2002).CrossRefGoogle Scholar
22Chemseddine, A. and Moritz, T.: Eur. J. Inorg. Chem. 1999, 235 (1999).3.0.CO;2-N>CrossRefGoogle Scholar