Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T04:32:41.615Z Has data issue: false hasContentIssue false

Transformation behavior of yttria stabilized tetragonal zirconia polycrystal–TiB2 composites

Published online by Cambridge University Press:  31 January 2011

B. Basu
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Leuven B-3001, Belgium
J. Vleugels
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Leuven B-3001, Belgium
O. Van Der Biest
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Leuven B-3001, Belgium
Get access

Abstract

The objective of the present article is to study the influence of TiB2 addition on the transformation behavior of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). A range of TZP(Y)–TiB2 composites with different zirconia starting powder grades and TiB2 phase contents (up to 50 vol%) were processed by the hot-pressing route. Thermal expansion data, as obtained by thermo-mechanical analysis were used to assess the ZrO2 phase transformation in the composites. The thermal expansion hysteresis of the transformable ceramics provides information concerning the transformation behavior in the temperature range of the martensitic transformation and the low-temperature degradation. Furthermore, the transformation behavior and susceptibility to low-temperature degradation during thermal cycling were characterized in terms of the overall amount and distribution of the yttria stabilizer, zirconia grain size, possible dissolution of TiB2 phase, and the amount of residual stress generated in the Y-TZP matrix due to the addition of titanium diboride particles. For the first time, it is demonstrated in the present work that the thermally induced phase transformation of tetragonal zirconia in the Y-TZP composites can be controlled by the intentional addition of the monoclinic zirconia particles into the 3Y-TZP matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kisi, E.H. and Howard, C.J., Key Eng. Mater. 153–154, 1 (1998).CrossRefGoogle Scholar
2.Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., J. Am. Ceram. Soc. 83, 461 (2000).CrossRefGoogle Scholar
3.Basu, B., Donzel, L., Van Humbeeck, J., Vleugels, J., Schaller, R., and Van Der Biest, O., Scripta Mater., 40, 759 (1999).CrossRefGoogle Scholar
4.Rühle, M. and Evans, A.G., Prog. Mater. Sci. 33, 85 (1989).CrossRefGoogle Scholar
5.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
6.Mcmeeking, R.M. and Evans, A.G., J. Am. Ceram. Soc. 65, 242 (1982).CrossRefGoogle Scholar
7.Garvie, R.C., Hannink, R.H., and Pascoe, R.T., Nature 258, 703 (1975).CrossRefGoogle Scholar
8.Lee, B-T., Lee, K-H., and Hiraga, K., Scripta Mater. 38, 1101 (1998).CrossRefGoogle Scholar
9.Telle, R. and Petzow, G., Mater. Sci. Eng. A 105/106, 97 (1988);CrossRefGoogle Scholar
Watanabe, T. and Shorbu, K., J. Am. Ceram. Soc. 68, C34 (1985).Google Scholar
10.Vleugels, J. and Van Der Biest, O., J. Am. Ceram. Soc. 82, 2717 (1999).CrossRefGoogle Scholar
11.Lawson, S., J. Eur. Ceram. Soc. 15, 485 (1995).CrossRefGoogle Scholar
12.Basu, B., Vleugels, J., and Van Der Biest, O., Mat. Sc. Engg. A (submitted).Google Scholar
13.Basu, B., Vleugels, J., and Van Der Biest, O.J. Matls. Sci. (submitted).Google Scholar
14.Schubert, H., J. Am. Ceram. Soc. 69, 270 (1986).CrossRefGoogle Scholar
15.Johnsson, M. and Eriksson, L., Z. Metallkd. 89, 478 (1998).Google Scholar
16.Ramakrishnan, N., Okada, H., and Atluri, S.N., Acta Mater. 39, 1297 (1991).CrossRefGoogle Scholar
17.Taya, M., Hayashi, S., Kobayashi, A.S., and Yoon, H.S., J. Am. Ceram. Soc. 73, 1382 (1990).CrossRefGoogle Scholar
18.Sergo, V., Pezzotti, G., Sbaizero, O., and Nishida, T., Acta Mater. 46, 1701 (1998).CrossRefGoogle Scholar
19.Pan, M-J., Green, D.J., and Hellmann, J.R., Scripta Mater. 36, 1095 (1997).CrossRefGoogle Scholar
20.Portu, G.D. and Conoci, S., J. Am. Ceram. Soc. 80, 3242 (1997).CrossRefGoogle Scholar
21.Stemmer, S., Vleugels, J., and Van Der Biest, O., J. Eur. Ceram. Soc. 18, 1565 (1998).CrossRefGoogle Scholar
22.Stemmer, S., Vleugels, J., and Van Der Biest, O., in Interfacial Engineering for Optimized Properties, edited by Briant, C.L., Carter, C.B., and Hall, E.L. (Mater. Res. Soc. Proc. 458, Pittsburgh, PA, 1997), pp. 133’138.Google Scholar
23.Shi, J.L., Lu, Z.L., and Guo, J.K., J. Mater. Res. 15, 727 (2000).CrossRefGoogle Scholar
24.Basu, B., Vleugels, J., and Van Der Biest, O.J. Europ. Ceram. Soc. (submitted).Google Scholar
25.Kulpa, A. and Troczynski, T., J. Am. Ceram. Soc. 79, 518 (1996).CrossRefGoogle Scholar
26.Basu, B., Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium (2001).Google Scholar
27.Lin, C L., Gan, D., and Shen, P., Mater. Sci. Eng. A,A129, 147 (1990).CrossRefGoogle Scholar
28.Kim, D-J., Jang, J-W., and Lee, H-L., J. Am. Ceram. Soc. 80, 1453 (1997).CrossRefGoogle Scholar
29.Hannink, R.H.J. and Muddle, B.C., Mater. Sci. Forum 34–36, 543 (1988).Google Scholar
30.Hwang, C-S., Tsaur, S-C., and Chang, Y-J., J. Ceram. Soc. Jpn. 102, 1111 (1994).CrossRefGoogle Scholar